Sodium removal in peritoneal dialysis: is there room for a new parameter in dialysis adequacy?


  • Anna Lima Nephrology Department, Hospital Prof Fernando Fonseca
  • Joana Tavares
  • Nicole Pestana
  • Maria João Carvalho
  • António Cabrita
  • Anabela Rodrigues



peritoneal dialysis, sodium removal, dialysis adequacy


In peritoneal dialysis (PD) (as well as in hemodialysis) small solute clearance measured as Kt/v urea has long been used as a surrogate of dialysis adequacy. A better urea clearance was initially thought to increase survival in dialysis patients (as shown in the CANUSA trial)(1), but  reanalysis of the data showed a superior contribution of residual renal function as a predictor of patient survival. Two randomized controlled trials (RCT)(2, 3)  supported this observation, demonstrating no survival benefit in patients with higher achieved Kt/v. Then guidelines were revised and a minimum Kt/v of 1,7/week was recommended but little emphasis was given to additional parameters of dialysis adequacy. As such, volume overload and sodium removal have gained major attention, since their optimization has been associated with decreased mortality in PD patients(4, 5). Inadequate sodium removal is associated with fluid overload which leads to ventricular hypertrophy and increased cardiovascular mortality(6). Individualized prescription is key for optimal sodium removal as there are differences between PD techniques (CAPD versus APD) and new strategies for sodium removal have emerged (low sodium solutions and adapted PD). In conclusion, future guidelines should address parameters associated with increased survival outcomes (sodium removal playing an important role) and abandon the current one fit all prescription model.


Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1996;7(2):198-207.

Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, Moran J, et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol. 2002;13(5):1307-20.

Lo WK, Ho YW, Li CS, Wong KS, Chan TM, Yu AW, et al. Effect of Kt/V on survival and clinical outcome in CAPD patients in a randomized prospective study. Kidney Int. 2003;64(2):649-56.

Ates K, Nergizoglu G, Keven K, Sen A, Kutlay S, Erturk S, et al. Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int. 2001;60(2):767-76.

Van Biesen W, Williams JD, Covic AC, Fan S, Claes K, Lichodziejewska-Niemierko M, et al. Fluid status in peritoneal dialysis patients: the European Body Composition Monitoring (EuroBCM) study cohort. PLoS One. 2011;6(2):e17148.

Enia G, Mallamaci F, Benedetto FA, Panuccio V, Parlongo S, Cutrupi S, et al. Long-term CAPD patients are volume expanded and display more severe left ventricular hypertrophy than haemodialysis patients. Nephrol Dial Transplant. 2001;16(7):1459-64.

Bieber S, Mehrotra R. Peritoneal Dialysis Access Associated Infections. Adv Chronic Kidney Dis. 2019;26(1):23-9.

Mehrotra R, Devuyst O, Davies SJ, Johnson DW. The Current State of Peritoneal Dialysis. J Am Soc Nephrol. 2016;27(11):3238-52.

Lo WK, Bargman JM, Burkart J, Krediet RT, Pollock C, Kawanishi H, et al. Guideline on targets for solute and fluid removal in adult patients on chronic peritoneal dialysis. Perit Dial Int. 2006;26(5):520-2.

Donna F, Margaret F, Richard M, Anthony G, Kerry W. National Kidney Foundation: 2006 Updates Clinical practice guideines and recommendations. 2006.

Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12(10):2158-62.

Vanholder R, Van Biesen W, Lameire N. A swan song for Kt/Vurea. Semin Dial. 2019.

Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260-72.

Herzog CA, Asinger RW, Berger AK, Charytan DM, Diez J, Hart RG, et al. Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 80. United States2011. p. 572-86.

Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296-305.

de Roij van Zuijdewijn CL, Hansildaar R, Bots ML, Blankestijn PJ, van den Dorpel MA, Grooteman MP, et al. Eccentric Left Ventricular Hypertrophy and Sudden Death in Patients with End-Stage Kidney Disease. Am J Nephrol. 2015;42(2):126-33.

Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62(5):1524-38.

Canaud B, Kooman J, Selby NM, Taal M, Francis S, Kopperschmidt P, et al. Sodium and water handling during hemodialysis: new pathophysiologic insights and management approaches for improving outcomes in end-stage kidney disease. Kidney Int. 2019;95(2):296-309.

Edwards DG, Farquhar WB. Vascular effects of dietary salt. Curr Opin Nephrol Hypertens. 2015;24(1):8-13.

DuPont JJ, Greaney JL, Wenner MM, Lennon-Edwards SL, Sanders PW, Farquhar WB, et al. High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-resistant humans. J Hypertens. 2013;31(3):530-6.

Makin SDJ, Mubki GF, Doubal FN, Shuler K, Staals J, Dennis MS, et al. Small Vessel Disease and Dietary Salt Intake: Cross-Sectional Study and Systematic Review. J Stroke Cerebrovasc Dis. 2017;26(12):3020-8.

Jorg S, Kissel J, Manzel A, Kleinewietfeld M, Haghikia A, Gold R, et al. High salt drives Th17 responses in experimental autoimmune encephalomyelitis without impacting myeloid dendritic cells. Exp Neurol. 2016;279:212-22.

Sharif K, Amital H, Shoenfeld Y. The role of dietary sodium in autoimmune diseases: The salty truth. Autoimmun Rev. 2018;17(11):1069-73.

Wong J, Sridharan S, Berdeprado J, Vilar E, Viljoen A, Wellsted D, et al. Predicting residual kidney function in hemodialysis patients using serum beta-trace protein and beta2-microglobulin. Kidney Int. 2016;89(5):1090-8.

Koh ES, Lee K, Kim SH, Kim YO, Jin DC, Song HC, et al. Serum beta2-Microglobulin Predicts Mortality in Peritoneal Dialysis Patients: A Prospective Cohort Study. Am J Nephrol. 2015;42(2):91-8.

Taki Y, Sakurada T, Koitabashi K, Imai N, Shibagaki Y. Predictive Factors for Withdrawal from Peritoneal Dialysis: A Retrospective Cohort Study at Two Centers in Japan. Adv Perit Dial. 2017;33(2017):68-73.

Raj DS, Ouwendyk M, Francoeur R, Pierratos A. beta(2)-microglobulin kinetics in nocturnal haemodialysis. Nephrol Dial Transplant. 2000;15(1):58-64.

Lornoy W, Becaus I, Billiouw JM, Sierens L, Van Malderen P, D’Haenens P. On-line haemodiafiltration. Remarkable removal of beta2-microglobulin. Long-term clinical observations. Nephrol Dial Transplant. 2000;15 Suppl 1:49-54.

Rippe B, Venturoli D, Simonsen O, de Arteaga J. Fluid and electrolyte transport across the peritoneal membrane during CAPD according to the three-pore model. Perit Dial Int. 2004;24(1):10-27.

Waniewski J, Debowska M, Lindholm B. How accurate is the description of transport kinetics in peritoneal dialysis according to different versions of the three-pore model? Perit Dial Int. 2008;28(1):53-60.

Rodriguez-Carmona A, Perez-Fontan M, Garca-Naveiro R, Villaverde P, Peteiro J. Compared time profiles of ultrafiltration, sodium removal, and renal function in incident CAPD and automated peritoneal dialysis patients. Am J Kidney Dis. 2004;44(1):132-45.

Rodriguez-Carmona A, Fontan MP. Sodium removal in patients undergoing CAPD and automated peritoneal dialysis. Perit Dial Int. 2002;22(6):705-13.

Ortega O, Gallar P, Carreno A, Gutierrez M, Rodriguez I, Oliet A, et al. Peritoneal sodium mass removal in continuous ambulatory peritoneal dialysis and automated peritoneal dialysis: influence on blood pressure control. Am J Nephrol. 2001;21(3):189-93.

Borrelli S, La Milia V, De Nicola L, Cabiddu G, Russo R, Provenzano M, et al. Sodium removal by peritoneal dialysis: a systematic review and meta-analysis. J Nephrol. 2019;32(2):231-9.

Kidney Disease: Improving Global Outcomes

(KDIGO) Blood Pressure Work Group. KDIGO Clinical Practice Guideline

for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int Suppl; 2012. p. 337–414.

Organization WH. Guidelines: Sodium intake for adults and children. 2012.

Polonia J, Martins L, Pinto F, Nazare J. Prevalence, awareness, treatment and control of hypertension and salt intake in Portugal: changes over a decade. The PHYSA study. J Hypertens. 2014;32(6):1211-21.

Davies S, Carlsson O, Simonsen O, Johansson AC, Venturoli D, Ledebo I, et al. The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status. Nephrol Dial Transplant. 2009;24(5):1609-17.

Holmes C, Mujais S. Glucose sparing in peritoneal dialysis: implications and metrics. Kidney Int Suppl. 2006(103):S104-9.

Szeto CC, Chow KM, Kwan BC, Chung KY, Leung CB, Li PK. New-onset hyperglycemia in nondiabetic chinese patients started on peritoneal dialysis. Am J Kidney Dis. 2007;49(4):524-32.

Li PK, Culleton BF, Ariza A, Do JY, Johnson DW, Sanabria M, et al. Randomized, controlled trial of glucose-sparing peritoneal dialysis in diabetic patients. J Am Soc Nephrol. 2013;24(11):1889-900.

Szeto CC, Johnson DW. Low GDP Solution and Glucose-Sparing Strategies for Peritoneal Dialysis. Semin Nephrol. 2017;37(1):30-42.

Mehrotra R, de Boer IH, Himmelfarb J. Adverse effects of systemic glucose absorption with peritoneal dialysis: how good is the evidence? Curr Opin Nephrol Hypertens. 2013;22(6):663-8.

Blake PG. Sodium Levels in Peritoneal Dialysis Solution: How Low Should We Go? Am J Kidney Dis. 2016;67(5):719-21.

Rutkowski B, Tam P, van der Sande FM, Vychytil A, Schwenger V, Himmele R, et al. Low-Sodium Versus Standard-Sodium Peritoneal Dialysis Solution in Hypertensive Patients: A Randomized Controlled Trial. Am J Kidney Dis. 2016;67(5):753-61.

Freida P, Issad B, Dratwa M, Lobbedez T, Wu L, Leypoldt JK, et al. A combined crystalloid and colloid pd solution as a glucose-sparing strategy for volume control in high-transport apd patients: a prospective multicenter study. Perit Dial Int. 2009;29(4):433-42.

Fischbach M, Zaloszyc A, Schaefer B, Schmitt CP. Optimizing peritoneal dialysis prescription for volume control: the importance of varying dwell time and dwell volume. Pediatr Nephrol. 2014;29(8):1321-7.

Finkelstein F, Healy H, Abu-Alfa A, Ahmad S, Brown F, Gehr T, et al. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol. 2005;16(2):546-54.

Fischbach M, Schmitt CP, Shroff R, Zaloszyc A, Warady BA. Increasing sodium removal on peritoneal dialysis: applying dialysis mechanics to the peritoneal dialysis prescription. Kidney Int. 2016;89(4):761-6.

Fischbach M, Issad B, Dubois V, Taamma R. The beneficial influence on the effectiveness of automated peritoneal dialysis of varying the dwell time (short/long) and fill volume (small/large): a randomized controlled trial. Perit Dial Int. 2011;31(4):450-8.

Oberg CM, Rippe B. Is Adapted APD Theoretically More Efficient than Conventional APD? Perit Dial Int. 2017;37(2):212-7.

Tabinor M, Elphick E, Dudson M, Kwok CS, Lambie M, Davies SJ. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): systematic review and subgroup meta-analysis. Sci Rep. 2018;8(1):4441.

Woodrow G, Devine Y, Cullen M, Lindley E. Application of bioelectrical impedance to clinical assessment of body composition in peritoneal dialysis. Perit Dial Int. 2007;27(5):496-502.



How to Cite

Lima A, Tavares J, Pestana N, Carvalho MJ, Cabrita A, Rodrigues A. Sodium removal in peritoneal dialysis: is there room for a new parameter in dialysis adequacy?. Bull Dial Domic [Internet]. 2019 Sep. 18 [cited 2024 Feb. 22];2(3):151-7. Available from: