Translation of Recommendations for the evaluation of peritoneal membrane dysfunction in adults : classification, measurment,interprétation and rationale for intervention.

French translation with ISPD authorization

Authors

DOI:

https://doi.org/10.25796/bdd.v4i3.62673

Keywords:

peritoneal dialysis, peritoneal membrane, ultrafiltration, ISPD guidelines

Abstract

Informations concernant cette traduction
Dans le cadre d’un accord de partenariat entre l’ISPD et le RDPLF, le RDPLF est le traducteur français officiel des recommandations de l’ISPD. La traduction ne donne lieu à aucune compensation financière de la part de chaque société et le RDPLF s’est engagé à traduire fidèlement le texte original sous la responsabilité de deux néphrologues connus pour leur expertise dans le domaine. Avant publication le texte a été soumis à l’accord de l’ISPD. La traduction est disponible sur le site de l’ISPD et dans le Bulletin de la Dialyse à Domicile.
Le texte est, comme l’original, libremement téléchargeable sous licence copyright CC By 4.0
https://creativecommons.org/licenses/by/4.0/
Cette traduction est destinée à aider les professionnels de la communauté francophone à prendre connaissance des recommandations de l’ISPD dans leur langue maternelle.


Toute référence dans un article doit se faire au texte original en accès libre :
Peritoneal Dialysis International https://doi.org/10.1177/0896860820982218


Dans les articles rédigés pour des revues françaises, conserver la référence à la version originale anglaise ci dessus, mais ajouter «version française  https://doi.org/10.25796/bdd.v4i3.62673"
»
Traducteurs
Dr Christian Verger, néphrologue, président du RDPLF
RDPLF, 30 rue Sere Depoin, 95300 Pontoise – France
Professeur Max Dratwa, néphrologue
Hôpital Universitaire Brugmann – Bruxelles – Belgique

References

- Mujais, S, Nolph, K, Gokal, R, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis. Perit Dial Int 2000; 20: 5–21.

- Van Biesen, W, Heimburger, O, Krediet, R, et al. Evaluation of peritoneal membrane characteristics: clinical advice for prescription management by the ERBP working group. Nephrol Dial Transplant 2010; 25: 2052–2062. http://www.ncbi.nlm.nih.gov/pubmed/20203287 (accessed 28 June 2014).

- Clinical Practice Guidelines for Peritoneal Adequacy . Update 2006. Am J Kidney Dis 2006: 48.

- Lo, WK, Bargman, JM, Burkart, J, et al. Guideline on targets for solute and fluid removal in adult patients on chronic peritoneal dialysis. Perit Dial Int 2006; 26: 520–522.

- Wang, AYM, Brimble, KS, Brunier, G, et al. ISPD cardiovascular and metabolic guidelines in adult peritoneal dialysis patients part I – assessment and management of various cardiovascular risk factors. Perit Dial Int 2015; 35: 379–387. http://www.pdiconnect.com/cgi/doi/10.3747/pdi.2014.00279 (accessed 11 December 2016).

- Wang, AYM, Dong, J, Xu, X, et al. Volume management as a key dimension of a high-quality PD prescription. Perit Dial Int 2020; 40(3): 282–292.

- Brown, EA, Blake, PG, Boudville, N, et al. International society for peritoneal dialysis practice recommendations: prescribing high-quality goal-directed peritoneal dialysis. Perit Dial Int 2020; 40(3): 244–253.

- Zoccali, C, Moissl, U, Chazot, C, et al. Chronic fluid overload and mortality in ESRD. J Am Soc Nephrol 2017; 28: 2491–2497. http://www.ncbi.nlm.nih.gov/pubmed/28473637 (accessed 7 June 2018).

- Tabinor, M, Elphick, E, Dudson, M, et al. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): systematic review and subgroup meta-analysis. Sci Rep 2018; 8: 4441. http://www.nature.com/articles/s41598-018-21226-y (accessed 7 June 2018).

- Ronco, C, Verger, C, Crepaldi, C, et al. Baseline hydration status in incident peritoneal dialysis patients: the initiative of patient outcomes in dialysis (IPOD-PD study). Nephrol Dial Transplant 2015; 30: 849–858.

- Van Biesen, W, Verger, C, Heaf, J, et al. Evolution over time of volume status and PD-related practice patterns in an incident peritoneal dialysis cohort. Clin J Am Soc Nephrol 2019; 14: 882–893.

- Brown, EA, Davies, SJ, Rutherford, P, et al. Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J Am Soc Nephrol 2003; 14: 2948–2957.

- Jansen, MAM, Termorshuizen, F, Korevaar, JC, et al. Predictors of survival in anuric peritoneal dialysis patients. Kidney Int 2005; 68: 1199–1205. http://www.ncbi.nlm.nih.gov/pubmed/16105051

- Lin, X, Lin, A, Ni, Z, et al. Daily peritoneal ultrafiltration predicts patient and technique survival in anuric peritoneal dialysis patients. Nephrol Dial Transplant 2010; 25: 2322–2327.

- Manera, K, Tong, A, Craig, J, et al. Developing consensus-based outcome domains for trials in peritoneal dialysis: an international Delphi survey. Kidney Int. 2019.

- Manera, KE, Tong, A, Craig, JC, et al. Standardized outcomes in nephrology-peritoneal dialysis (SONG-PD): study protocol for establishing a core outcome set in PD. Perit Dial Int 2017; 37: 639–647. http://www.pdiconnect.com/lookup/doi/10.3747/pdi.2017.00022 (accessed 4 April 2019).

- Guyatt, G, Oxman, AD, Akl, EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011; 64: 383–394.

- Neumann, I, Santesso, N, Akl, EA, et al. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol 2016; 72: 45–55.

- Rippe, B . A three-pore model of peritoneal transport. Perit Dial Int 1993; 13: 35–38.

- Öberg, CM, Rippe, B. Optimizing automated peritoneal dialysis using an extended 3-pore model. Kidney Int Rep 2017; 2: 943–951.

- Rippe, B, Venturoli, D. Simulations of osmotic ultrafiltration failure in CAPD using a serial three-pore membrane/fiber matrix model. Am J Physiol Renal Physiol 2007; 292: F1035–F1043.

- Flessner, MF, Dedrick, RL, Schultz, JS. A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol 1984; 246: R597–R607.

- Stachowska-Pietka, J, Waniewski, J, Flessner, MF, et al. Concomitant bidirectional transport during peritoneal dialysis can be explained by a structured interstitium. Am J Physiol Heart Circ Physiol 2016; 310: H1501–H1511.

- Stachowska-Pietka, J, Waniewski, J, Flessner, MF, et al. Computer simulations of osmotic ultrafiltration and small-solute transport in peritoneal dialysis: a spatially distributed approach. Am J Physiol Ren Physiol 2012; 302: 1331–1341.

- Dedrick, RL, Flessner, MF, Collins, JM, et al. Is the peritoneum a membrane? ASAIO J 1982; 5: 1–3.

- Waniewski, J, Heimbürger, O, Werynski, A, et al. Diffusive and convective solute transport in peritoneal dialysis with glucose as an osmotic agent. Artif Organs 1995; 19: 295–306.

- Imholz, AL, Koomen, GC, Struijk, DG, et al. Fluid and solute transport in CAPD patients using ultralow sodium dialysate. Kidney Int 1994; 46: 333–340.

- Simonsen, O, Sterner, G, Carlsson, O, et al. Improvement of peritoneal ultrafiltration with peritoneal dialysis solution buffered with bicarbonate/lactate mixture. Perit Dial Int 2006; 26: 353–359. http://www.ncbi.nlm.nih.gov/pubmed/16722029

- Haraldsson, B . Assessing the peritoneal dialysis capacities of individual patients. Kidney Int 1995; 47: 1187–1198.

- Keshaviah, P, Emerson, PF, Vonesh, EF, et al. Relationship between body size, fill volume, and mass transfer area coefficient in peritoneal dialysis. J Am Soc Nephrol 1994; 4: 1820–1826.

- Chagnac, A, Herskovitz, P, Ori, Y, et al. Effect of increased dialysate volume on peritoneal surface area among peritoneal dialysis patients. J Am Soc Nephrol 2002; 13: 2554–2559.

- Stachowska-Pietka, J, Poleszczuk, J, Flessner, MF, et al. Alterations of peritoneal transport characteristics in dialysis patients with ultrafiltration failure: tissue and capillary components. Nephrol Dial Transplant 2019; 34: 864–870. https://pubmed.ncbi.nlm.nih.gov/30403818

- Öberg, CM, Martuseviciene, G. Computer simulations of continuous flow peritoneal dialysis using the 3-pore model-A first experience. Perit Dial Int J Int Soc Perit Dial 2019; 39: 236–242.

- Rippe, B, Stelin, G, Haraldsson, B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 1991; 40: 315–325. http://www.ncbi.nlm.nih.gov/pubmed/1942781 (accessed 16 April 2017).

- Agre, P . Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed Engl 2004; 43: 4278–4290.

- Devuyst, O, Rippe, B. Water transport across the peritoneal membrane. Kidney Int 2014; 85: 750–758. http://www.ncbi.nlm.nih.gov/pubmed/23802191 (accessed 30 November 2014).

- Ni, J, Verbavatz, JM, Rippe, A, et al. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int 2006; 69: 1518–1525.

- Morelle, J, Sow, A, Vertommen, D, et al. Quantification of osmotic water transport in vivo using fluorescent albumin. Am J Physiol Renal Physiol 2014; 307: F981–F989. http://www.ncbi.nlm.nih.gov/pubmed/25100279 (accessed 30 November 2014).

- Zhang, W, Freichel, M, Van Der Hoeven, F, et al. Novel endothelial cell-specific AQP1 knockout mice confirm the crucial role of endothelial AQP1 in ultrafiltration during peritoneal dialysis. PLoS One 2016; 11: 1–15.

- Morelle, J, Sow, A, Fustin, C-A, et al. Mechanisms of crystalloid versus colloid osmosis across the peritoneal membrane. J Am Soc Nephrol 2018; 29: 1875–1886.

http://www.jasn.org/lookup/doi/10.1681/ASN.2017080828 (accessed 6 July 2018).

- Rippe, B, Levin, L. Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD. Kidney Int 2000; 57: 2546–2556. http://www.ncbi.nlm.nih.gov/pubmed/10844624

- Lambie, M, Chess, J, Donovan, KL, et al. Independent effects of systemic and peritoneal inflammation on peritoneal dialysis survival. J Am Soc Nephrol 2013; 24: 2071–2080. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3839554&tool=pmcentrez&rendertype=abstract (accessed 5 June 2016).

- La Milia, V, Limardo, M, Virga, G, et al. Simultaneous measurement of peritoneal glucose and free water osmotic conductances. Kidney Int 2007; 72: 643–650.

- Waniewski, J, Paniagua, R, Stachowska-Pietka, J, et al. Threefold peritoneal test of osmotic conductance, ultrafiltration efficiency, and fluid absorption. Perit Dial Int 2013; 33: 419–425.

- Mehrotra, R, Ravel, V, Streja, E, et al. Peritoneal equilibration test and patient outcomes. Clin J Am Soc Nephrol 2015; 10: 1990–2001.

- Twardowski, ZJ, Nolph, KD, Khanna, R, et al. Peritoneal equilibration test. Perit Dial Int 1987; 7: 138–147.

- Davies, SJ . Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int 2004; 66: 2437–2445.

- Cueto-Manzano, AM, Díaz-Alvarenga, A, Correa-Rotter, R. Analysis of the peritoneal equilibration test in Mexico and factors influencing the peritoneal transport rate. Perit Dial Int J Int Soc Perit Dial 1999; 19: 45–50.

- Mujais, S, Vonesh, E. Profiling of peritoneal ultrafiltration. Kidney Int Suppl 2002; S17–S22.

- Rumpsfeld, M, McDonald, SP, Johnson, DW. Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J Am Soc Nephrol 2006; 17: 271–278. http://www.ncbi.nlm.nih.gov/pubmed/16306167 (accessed 28 June 2014).

- Smit, W, van Dijk, P, Langedijk, MJ, et al. Peritoneal function and assessment of reference values using a 3.86% glucose solution. Perit Dial Int 2003; 23: 440–449. http://www.ncbi.nlm.nih.gov/pubmed/14604195 (accessed 11 December 2016).

- Shi, Y, Yan, H, Yuan, J, et al. Different patterns of inflammatory and angiogenic factors are associated with peritoneal small solute transport and peritoneal protein clearance in peritoneal dialysis patients. BMC Nephrol 2018; 19: 119.

- La Milia, V, Cabiddu, G, Virga, G, et al. Peritoneal equilibration test reference values using a 3.86% glucose solution during the first year of peritoneal dialysis: results of a multicenter study of a large patient population. Perit Dial Int 2017; 37: 633–638.

- Davies, SJ, Brown, EA, Frandsen, NE, et al. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int 2005; 67: 1609–1615.

- Sampimon, DE, Coester, AM, Struijk, DG, et al. The time course of peritoneal transport parameters in peritoneal dialysis patients who develop encapsulating peritoneal sclerosis. Nephrol Dial Transplant 2011; 26: 291–298. http://www.ncbi.nlm.nih.gov/pubmed/20566569 (accessed 27 June 2014).

- Morelle, J, Sow, A, Hautem, N, et al. Interstitial fibrosis restricts osmotic water transport in encapsulating peritoneal sclerosis. J Am Soc Nephrol 2015; 26: 2521–2533. http://www.ncbi.nlm.nih.gov/pubmed/25636412 (accessed 29 November 2015).

- Sampimon, DE, Korte, MR, Barreto, DL, et al. Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study. Perit Dial Int 2010; 30: 163–169. http://www.ncbi.nlm.nih.gov/pubmed/20124195 (accessed 28 June 2014).

- Parikova, A, Smit, W, Struijk, DG, et al. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis. Kidney Int 2005; 68: 1849–1856. http://linkinghub.elsevier.com/retrieve/pii/S0085253815510399 (accessed 18 April 2017).

- Cho, Y, Johnson, DW, Vesey, DA, et al. Dialysate interleukin-6 predicts increasing peritoneal solute transport rate in incident peritoneal dialysis patients. BMC Nephrol 2014; 15: 8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3893539&tool=pmcentrez&rendertype=abstract

- Blake, PG, Abraham, G, Sombolos, K, et al. Changes in peritoneal membrane transport rates in patients on long term CAPD. Adv Perit Dial 1989; 5: 3–7.

- Davies, SJ, Bryan, J, Phillips, L, et al. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant 1996; 11: 498–506.

- Davies, SJ, Phillips, L, Naish, PF, et al. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol 2001; 12: 1046–1051.

- Lambie, ML, John, B, Mushahar, L, et al. The peritoneal osmotic conductance is low well before the diagnosis of encapsulating peritoneal sclerosis is made. Kidney Int 2010; 78: 611–618.

- Johnson, DW, Brown, FG, Clarke, M, et al. Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. J Am Soc Nephrol 2012; 23: 1097–1107. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3358767&tool=pmcentrez&rendertype=abstract (accessed 26 May 2014).

- Van Esch, S, Struijk, DG, Krediet, RT. The natural time course of membrane alterations during peritoneal dialysis is partly altered by peritonitis. Perit Dial Int J Int Soc Perit Dial 2016; 36: 448–456.

- Pecoits-Filho, R, Araújo, MRT, Lindholm, B, et al. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 2002; 17: 1480–1486.

- Pecoits-Filho, R, Carvalho, MJ, Stenvinkel, P, et al. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial 2006; 26: 53–63.

- Yang, X, Zhang, H, Hang, Y, et al. Intraperitoneal interleukin-6 levels predict peritoneal solute transport rate: a prospective cohort study. Am J Nephrol 2014; 39: 459–465.

- Gillerot, G, Goffin, E, Michel, C, et al. Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int 2005; 67: 2477–2487.

- Hwang, YH, Son, MJ, Yang, J, et al. Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients. Perit Dial Int 2009; 29: 81–88.

- Krediet, RT, Zuyderhoudt, FM, Boeschoten, EW, et al. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest 1987; 17: 43–52.

- Clause, A-L, Keddar, M, Crott, R, et al. A large intraperitoneal residual volume hampers adequate volumetric assessment of osmotic conductance to glucose. Perit Dial Int 2018; 38(5): 356–362. http://www.pdiconnect.com/lookup/doi/10.3747/pdi.2017.00219 (accessed 6 July 2018).

- La Milia, V, Pozzoni, P, Virga, G, et al. Peritoneal transport assessment by peritoneal equilibration test with 3.86% glucose: a long-term prospective evaluation. Kidney Int 2006; 69: 927–933.

- Kawaguchi, Y, Saito, A, Kawanishi, H, et al. Recommendations on the management of encapsulating peritoneal. Perit Dial Int 2005; 25: 83–95.

- Brown, EA, Bargman, J, van Biesen, W, et al. Length of time on peritoneal dialysis and encapsulating peritoneal sclerosis

- La Milia, V, Longhi, S, Sironi, E, et al. The peritoneal sieving of sodium: a simple and powerful test to rule out the onset of encapsulating peritoneal sclerosis in patients undergoing peritoneal dialysis. J Nephrol 2018; 31: 137–145. http://link.springer.com/10.1007/s40620-016-0371-9 (accessed 6 July 2018).

- Williams, JD, Craig, KJ, Topley, N, et al. Peritoneal biopsy study group: morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13: 470–479. http://www.ncbi.nlm.nih.gov/pubmed/11805177 (accessed 11 December 2016).

- Honda, K, Hamada, C, Nakayama, M, et al. Impact of uremia, diabetes, and peritoneal dialysis itself on the pathogenesis of peritoneal sclerosis: a quantitative study of peritoneal membrane morphology. Clin J Am Soc Nephrol 2008; 3: 720–728.

- Devuyst, O, Margetts, PJ, Topley, N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol 2010; 21: 1077–1085.

- Fielding, CA, Jones, GW, McLoughlin, RM, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 2014; 40: 40–50. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3919204&tool=pmcentrez&rendertype=abstract (accessed 28 May 2014).

- Hautem, N, Morelle, J, Sow, A, et al. The NLRP3 inflammasome has a critical role in peritoneal dialysis-related peritonitis. J Am Soc Nephrol 2017; 28: 2038–2052.

- Fischbach, M, Zaloszyc, A, Schaefer, B, et al. Should sodium removal in peritoneal dialysis be estimated from the ultrafiltration volume? Pediatr Nephrol 2017; 32: 419–424. http://link.springer.com/10.1007/s00467-016-3378-5 (accessed 6 July 2018).

- Reimold, FR, Braun, N, Zsengellér, ZK, et al. Transcriptional patterns in peritoneal tissue of encapsulating peritoneal sclerosis, a complication of chronic peritoneal dialysis. PLoS One 2013; 8: e56389. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3572070&tool=pmcentrez&rendertype=abstract (accessed 29 November 2015).

- Augustine, T, Brown, PW, Davies, SD, et al. Encapsulating peritoneal sclerosis: clinical significance and implications. Nephron Clin Pract 2009; 111: c149–c154.

- Yáñez-Mó, M, Lara-Pezzi, E, Selgas, R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003; 348: 403–413.

- Chen, Y-T, Chang, Y-T, Pan, S-Y, et al. Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. J Am Soc Nephrol 2014; 25: 2847–2858. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4243351&tool=pmcentrez&rendertype=abstract (accessed 31 January 2016).

- Rodrigues-Díez, R, Aroeira, LS, Orejudo, M, et al. IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney Int 2014; 86: 303–315.

- Lambie, MR, Chess, J, Summers, AM, et al. Peritoneal inflammation precedes encapsulating peritoneal sclerosis: results from the GLOBAL Fluid Study. Nephrol Dial Transplant 2016; 31: 480–486. http://www.ncbi.nlm.nih.gov/pubmed/26908833 (accessed 5 June 2016).

- Davies, SJ . Unraveling the mechanisms of progressive peritoneal membrane fibrosis. Kidney Int [Internet] 2016; 89: 1185–1187. http://linkinghub.elsevier.com/retrieve/pii/S0085253816300084 (accessed 7 June 2018).

- Liappas, G, González-Mateo, GT, Sánchez-Díaz, R, et al. Immune-regulatory molecule CD69 controls peritoneal fibrosis. J Am Soc Nephrol 2016; 27: 3561–3576.

- Li, L, Shen, N, Wang, N, et al. Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney Int 2018; 93: 1384–1396.

- Davies, SJ, Brown, B, Bryan, J, et al. Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol Dial Transplant 1993; 8: 64–70.

- Pannekeet, MM, Imholz, AL, Struijk, DG, et al. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int 1995; 48: 866–875.

- Van Biesen, W, Van der Tol, A, Veys, N, et al. The personal dialysis capacity test is superior to the peritoneal equilibration test to discriminate inflammation as the cause of fast transport status in peritoneal dialysis patients. Clin J Am Soc Nephrol 2006; 1: 269–274. http://www.ncbi.nlm.nih.gov/pubmed/17699216 (accessed 28 June 2014).

- Galach, M, Antosiewicz, S, Baczynski, D, et al. Sequential peritoneal equilibration test: a new method for assessment and modelling of peritoneal transport. Nephrol Dial Transplant 2013; 28: 447–454. https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfs592 (accessed 16 April 2017).

- Waniewski, J, Antosiewicz, S, Baczynski, D, et al. Peritoneal fluid transport rather than peritoneal solute transport associates with dialysis vintage and age of peritoneal dialysis patients. Comput Math Methods Med 2016: 8204294.

- Ho-dac-Pannekeet, MM, Atasever, B, Struijk, DG, et al. Analysis of ultrafiltration failure in peritoneal dialysis patients by means of standard peritoneal permeability analysis. Perit Dial Int 1997; 17: 144–150. http://www.ncbi.nlm.nih.gov/pubmed/9159834 (accessed 18 April 2017).

- Virga, G, Amici, G, da Rin, G, et al. Comparison of fast peritoneal equilibration tests with 1.36 and 3.86% dialysis solutions. Blood Purif 1994; 12: 113–120.

- Smit, W, Langedijk, MJ, Schouten, N, et al. A comparison between 1.36% and 3.86% glucose dialysis solution for the assessment of peritoneal membrane function. Perit Dial Int 2000; 20: 734–741. http://www.ncbi.nlm.nih.gov/pubmed/11216568

- Pride, ET, Gustafson, J, Graham, A, et al. Comparison of a 2.5% and a 4.25% dextrose peritoneal equilibration test. Perit Dial Int J Int Soc Perit Dial 2002; 22: 365–370.

- Stachowska-Pietka, J, Poleszczuk, J, Teixido-Planas, J, et al. Fluid tonicity affects peritoneal characteristics derived by 3-pore model. Perit Dial Int J Int Soc Perit Dial 2019; 39: 243–251.

- Wiggins, KJ, Blizzard, S, Arndt, M, et al. Increases in peritoneal small solute transport in the first month of peritoneal dialysis predict technique survival. Nephrology (Carlton) 2004; 9: 341–347.

- Brimble, KS, Walker, M, Margetts, PJ, et al. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol 2006; 17: 2591–2598. http://www.ncbi.nlm.nih.gov/pubmed/16885406 (accessed 28 June 2014).

- Davies, SJ, Phillips, L, Russell, GI. Peritoneal solute transport predicts survival on CAPD independently of residual renal function. Nephrol Dial Transplant 1998; 13: 962–968.

- Churchill, DN, Thorpe, KE, Nolph, KD, et al. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. The Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol 1998; 9: 1285–1292. http://www.ncbi.nlm.nih.gov/pubmed/9644640 (accessed 18 April 2017).

- Tabinor, M, Lambie, MR, Davies, SJ. Salt and water balance. In: Johnson, DW, Craig, J, Malony, DA, Strippoli, GFM (eds) Evidence Based Nephrology. 2nd ed. New Jersey, USA: Wiley, 2021.

- Wang, T, Waniewski, J, Heimbürger, O, et al. A quantitative analysis of sodium transport and removal during peritoneal dialysis. Kidney Int 1997; 52: 1609–1616.

- Asghar, RB, Davies, SJ. Pathways of fluid transport and reabsorption across the peritoneal membrane. Kidney Int 2008; 73: 1048–1053.

- McCafferty, K, Fan, SLS. Are we underestimating the problem of ultrafiltration in peritoneal dialysis patients? Perit Dial Int 2006; 26: 349–352. http://www.ncbi.nlm.nih.gov/pubmed/16722028

- La Milia, V, Pozzoni, P, Crepaldi, M, et al. Overfill of peritoneal dialysis bags as a cause of underestimation of ultrafiltration failure. Perit Dial Int 2006; 26: 503–505. http://www.ncbi.nlm.nih.gov/pubmed/16881347

- Johnson, DW, Hawley, CM, Mcdonald, SP, et al. Superior survival of high transporters treated with automated versus continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 2010; 25: 1973–1979. http://www.ncbi.nlm.nih.gov/pubmed/20097847 (accessed 26 June 2014).

- Olszowska, A, Waniewski, J, Stachowska-Pietka, J, et al. Long peritoneal dialysis dwells with icodextrin: kinetics of transperitoneal fluid and polyglucose transport. Front Physiol 2019; 10: 1326. https://www.frontiersin.org/article/10.3389/fphys.2019.01326

- Davies, SJ, Woodrow, G, Donovan, K, et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol 2003; 14: 2338–2344. http://www.ncbi.nlm.nih.gov/pubmed/12937311 (accessed 10 October 2014).

- Konings, CJAM, Kooman, JP, Schonck, M, et al. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int 2003; 63: 1556–1563.

- Htay, H, Johnson, DW, Wiggins, KJ, et al. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev 2018; 10: CD007554. http://www.ncbi.nlm.nih.gov/pubmed/30362116 (accessed 5 December 2019).

- Goossen, K, Becker, M, Marshall, MR, et al. Icodextrin versus glucose solutions for the once-daily long dwell in peritoneal dialysis: an enriched systematic review and meta- analysis of randomised controlled trials. Am J Kidney Dis 2019.

- Wiggins, KJ, Rumpsfeld, M, Blizzard, S, et al. Predictors of a favourable response to icodextrin in peritoneal dialysis patients with ultrafiltration failure. Nephrology (Carlton) 2005; 10: 33–36.

- La Milia, V, Pontoriero, G, Virga, G, et al. Ionic conductivity of peritoneal dialysate: a new, easy and fast method of assessing peritoneal membrane function in patients undergoing peritoneal dialysis. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 2015; 30: 1741–1746.

- Monquil, MC, Imholz, AL, Struijk, DG, et al. Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Perit Dial Int J Int Soc Perit Dial 1995; 15: 42–48.

- Heimbürger, O, Waniewski, J, Werynski, A, et al. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 1990; 38: 495–506.

- Heimbürger, O, Waniewski, J, Werynski, A, et al. Dialysate to plasma solute concentration (D/P) versus peritoneal transport parameters in CAPD. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 1994; 9: 47–59.

- Lambie, M, Teece, L, Johnson, DW, et al. Estimating risk of encapsulating peritoneal sclerosis accounting for the competing risk of death. Nephrol Dial Transplant 2019; 34: 1585–1591.

- Rippe, B . Free water transport, small pore transport and the osmotic pressure gradient three-pore model of peritoneal transport. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 2008; 23: 2147–2153.

- Rosengren, B-I, Rippe, A, Rippe, C, et al. Transvascular protein transport in mice lacking endothelial caveolae. AJP Hear Circ Physiol 2006; 291: H1371–H1377.

http://www.ncbi.nlm.nih.gov/pubmed/16501011 (accessed 17 April 2017).

- Yu, Z, Lambie, M, Chess, J, et al. Peritoneal protein clearance is a function of local inflammation and membrane area whereas systemic inflammation and comorbidity predict survival of incident peritoneal dialysis patients. Front Physiol 2019; 10: 1–9.

- Sánchez-Villanueva, R, Bajo, A, Del Peso, G, et al. Higher daily peritoneal protein clearance when initiating peritoneal dialysis is independently associated with peripheral arterial disease (PAD): a possible new marker of systemic endothelial dysfunction? Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 2009; 24: 1009–1014.

- Yu, Z, Tan, BK, Dainty, S, et al. Hypoalbuminaemia, systemic albumin leak and endothelial dysfunction in peritoneal dialysis patients. Nephrol Dial Transplant 2012; 27: 4437–4445.

- Krediet, RT, Yoowannakul, S, Harris, LS, et al. Relationships between peritoneal protein clearance and parameters of fluid status agree with clinical observations in other diseases that venous congestion increases microvascular protein escape. Perit Dial Int J Int Soc Perit Dial 2019; 39: 155–162.

- Heaf, JG, Sarac, S, Afzal, S. A high peritoneal large pore fluid flux causes hypoalbuminaemia and is a risk factor for death in peritoneal dialysis patients. Nephrol Dial Transplant 2005; 20: 2194–2201.

- Perl, J, Huckvale, K, Chellar, M, et al. Peritoneal protein clearance and not peritoneal membrane transport status predicts survival in a contemporary cohort of peritoneal dialysis patients. Clin J Am Soc Nephrol 2009; 4: 1201–1206.

- Pérez-Fontán, M, Rodríguez-Carmona, A, Barreda, D, et al. Peritoneal protein transport during the baseline peritoneal equilibration test is an accurate predictor of the outcome of peritoneal dialysis patients. Nephron Clin Pract 2010; 116: c104–c113.

- Rajakaruna, G, Caplin, B, Davenport, A. Peritoneal protein clearance rather than faster transport status determines outcomes in peritoneal dialysis patients. Perit Dial Int J Int Soc Perit Dial 2015; 35: 216–221.

- Balafa, O, Halbesma, N, Struijk, DG, et al. Peritoneal albumin and protein losses do not predict outcome in peritoneal dialysis patients. Clin J Am Soc Nephrol 2011; 6: 561–566. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3082414&tool=pmcentrez&rendertype=abstract (accessed 27 June 2014).

- Szeto, C, Chow, K, Lam, CW, et al. Peritoneal albumin excretion is a strong predictor of cardiovascular events in peritoneal dialysis patients: a prospective cohort study. Perit Dial Int 2005; 25: 445–452.

- Chang, TI, Kang, EW, Lee, YK, et al. Higher peritoneal protein clearance as a risk factor for cardiovascular disease in peritoneal dialysis patient. PLoS One 2013; 8.

- Dong, J, Chen, Y, Luo, S, et al. Peritoneal protein leakage, systemic inflammation, and peritonitis risk in patients on peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial 2013; 33: 273–279.

- Mehrotra, R, Duong, U, Jiwakanon, S, et al. Serum albumin as a predictor of mortality in peritoneal dialysis: comparisons with hemodialysis. Am J Kidney Dis 2011; 58: 418–428. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3159826&tool=pmcentrez&rendertype=abstract (accessed 30 May 2014).

- Durand, PY, Chanliau, J, Gambéroni, J, et al. Intraperitoneal hydrostatic pressure and ultrafiltration volume in CAPD. Adv Perit Dial 1993; 9: 46–48.

- Imholz, AL, Koomen, GC, Voorn, WJ, et al. Day-to-day variability of fluid and solute transport in upright and recumbent positions during CAPD. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 1998; 13: 146–153.

- Pérez Díaz, V, Sanz Ballesteros, S, Hernández García, E, et al. Intraperitoneal pressure in peritoneal dialysis. Nefrologia 2017; 37: 579–586.

- Twardowski, ZJ, Khanna, R, Nolph, KD, et al. Intraabdominal pressures during natural activities in patients treated with continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 129–135.

- Fischbach, M, Terzic, J, Laugel, V, et al. Measurement of hydrostatic intraperitoneal pressure: a useful tool for the improvement of dialysis dose prescription. Pediatr Nephrol 2003; 18: 976–980.

- Liew, A . Prescribing peritoneal dialysis and achieving good quality dialysis in low and low-middle income countries. Perit Dial Int 2020; 40(3): 341–348.

- Rangaswamy, D, Guddattu, V, Webster, AC, et al. Icodextrin use for peritoneal dialysis in Australia: a cohort study using Australia and New Zealand Dialysis and Transplant Registry. Perit Dial Int 2020; 40: 209–219.

- Barreto, DL, Sampimon, DE, Struijk, DG, et al. Early detection of imminent encapsulating peritoneal sclerosis: free water transport, selected effluent proteins, or both? Perit Dial Int 2019; 39: 83–89.

- Latus, J, Habib, SM, Kitterer, D, et al. Histological and clinical findings in patients with post-transplantation and classical encapsulating peritoneal sclerosis: a European multicenter study. PLoS One 2014; 9: e106511. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4149574&tool=pmcentrez&rendertype=abstract (accessed 10 January 2015).

Published

2021-09-15

How to Cite

1.
Verger C, Dratwa M. Translation of Recommendations for the evaluation of peritoneal membrane dysfunction in adults : classification, measurment,interprétation and rationale for intervention.: French translation with ISPD authorization. Bull Dial Domic [Internet]. 2021 Sep. 15 [cited 2025 Jan. 22];4(3):193-226. Available from: https://bdd.rdplf.org/index.php/bdd/article/view/62673