New Fluids for Peritoneal Dialysis : why do we need them and what is it about?
DOI:
https://doi.org/10.25796/bdd.v8i2.87078Keywords:
peritoneal dialysis, biocompatible solutions, glucose toxicity, xylitol, L-carnitine, alanine-glutamineAbstract
Peritoneal dialysis (PD) fluids generate concentration and osmotic gradients across the peritoneal membrane to remove uremic toxins and to achieve ultrafiltration. The use of current-era dialysis fluids also drives peritoneal and systemic pro-inflammatory, pro-fibrotic and pro-angiogenic processes that could be linked to patient outcomes. As the most frequent causes of PD technique failure are mortality, infections, insufficient solute clearance and ultrafiltration failure, it is important to reflect on the effects and modifiable power of the PD fluids’ compositions.
This paper discusses the peritoneal and systemic effects of glucose-based PD fluids and the evidence on the use of icodextrin and amino-acid based alternatives. Recent innovations in PD fluids try to overcome the peritoneal and systemic toxicities of current formulations by using an alternative osmotic agent and/or by counteracting the metabolic effects of the carbohydrate load by the PD fluid.
References
Boenink, R., et al., The ERA Registry Annual Report 2022: Epidemiology of Kidney Replacement Therapy in Europe, with a focus on sex comparisons. Clin Kidney J, 2025. 18(2): p. sfae405. DOI: https://doi.org/10.1093/ckj/sfaf107
Kumar, V.A., et al., Survival of propensity matched incident peritoneal and hemodialysis patients in a United States health care system. Kidney Int, 2014. 86(5): p. 1016-22. DOI: https://doi.org/10.1038/ki.2014.224
Bonenkamp, A.A., et al., Trends in home dialysis use differ among age categories in past two decades: A Dutch registry study. Eur J Clin Invest, 2022. 52(1): p. e13656. DOI: https://doi.org/10.1111/eci.13656
Williams, J.D., et al., Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol, 2002. 13(2): p. 470-479. DOI: https://doi.org/10.1681/ASN.V132470
Davies, S.J., et al., Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol, 2001. 12(5): p. 1046-1051. DOI: https://doi.org/10.1681/ASN.V1251046
Grossin, N., et al., Improved in vitro biocompatibility of bicarbonate-buffered peritoneal dialysis fluid. Perit Dial Int, 2006. 26(6): p. 664-70. DOI: https://doi.org/10.1177/089686080602600610
Mortier, S., et al., Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int, 2005. 67(4): p. 1559-65. DOI: https://doi.org/10.1111/j.1523-1755.2005.00237.x
Mortier, S., et al., Long-term exposure to new peritoneal dialysis solutions: Effects on the peritoneal membrane. Kidney Int, 2004. 66(3): p. 1257-65. DOI: https://doi.org/10.1111/j.1523-1755.2004.00879.x
Sugiyama, N., et al., Low-GDP, pH-neutral solutions preserve peritoneal endothelial glycocalyx during long-term peritoneal dialysis. Clin Exp Nephrol, 2021. 25(9): p. 1035-1046. DOI: https://doi.org/10.1007/s10157-021-02078-9
Nakao, M., et al., Risk factors for encapsulating peritoneal sclerosis: Analysis of a 36-year experience in a University Hospital. Nephrology (Carlton), 2017. 22(11): p. 907-912. DOI: https://doi.org/10.1111/nep.12911
Nakayama, M., et al., Pathophysiology of encapsulating peritoneal sclerosis: lessons from findings of the past three decades in Japan. Clin Exp Nephrol, 2023. 27(9): p. 717-727. DOI: https://doi.org/10.1007/s10157-023-02360-y
Cho, Y., et al., The impact of neutral-pH peritoneal dialysates with reduced glucose degradation products on clinical outcomes in peritoneal dialysis patients. Kidney Int, 2013. 84(5): p. 969-79. DOI: https://doi.org/10.1038/ki.2013.190
Htay, H., et al., Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev, 2018. 10(10): p. CD007554. DOI: https://doi.org/10.1002/14651858.CD007554.pub3
Yohanna, S., et al., Effect of Neutral-pH, Low-Glucose Degradation Product Peritoneal Dialysis Solutions on Residual Renal Function, Urine Volume, and Ultrafiltration: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol, 2015. 10(8): p. 1380-8. DOI: https://doi.org/10.2215/CJN.05410514
Schaefer, B., et al., Neutral pH and low-glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal dialysis. Kidney Int, 2018. 94(2): p. 419-429. DOI: https://doi.org/10.1016/j.kint.2018.02.022
Grodstein, G.P., et al., Glucose absorption during continuous ambulatory peritoneal dialysis. Kidney Int, 1981. 19(4): p. 564-7. DOI: https://doi.org/10.1038/ki.1981.53
Kotla, S.K., A. Saxena, and R. Saxena, A Model To Estimate Glucose Absorption in Peritoneal Dialysis: A Pilot Study. Kidney360, 2020. 1(12): p. 1373-1379. DOI: https://doi.org/10.34067/KID.0004722020
le Poole, C.Y., et al., "NEPP" peritoneal dialysis regimen has beneficial effects on plasma CEL and 3-DG, but not pentosidine, CML, and MGO. Perit Dial Int, 2012. 32(1): p. 45-54. DOI: https://doi.org/10.3747/pdi.2010.00101
Zeier, M., et al., Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int, 2003. 63(1): p. 298-305. DOI: https://doi.org/10.1046/j.1523-1755.2003.00705.x
Krediet, R.T., Physiology of peritoneal dialysis; pathophysiology in long-term patients. Front Physiol, 2024. 15: p. 1322493. DOI: https://doi.org/10.3389/fphys.2024.1322493
Krediet, R.T. and A. Parikova, Relative Contributions of Pseudohypoxia and Inflammation to Peritoneal Alterations with Long-Term Peritoneal Dialysis Patients. Clin J Am Soc Nephrol, 2022. 17(8): p. 1259-1266. DOI: https://doi.org/10.2215/CJN.15371121
Krediet, R.T. and A. Parikova, Glucose-induced pseudohypoxia and advanced glycosylation end products explain peritoneal damage in long-term peritoneal dialysis. Perit Dial Int, 2024. 44(1): p. 6-15. DOI: https://doi.org/10.1177/08968608231196033
Dioos, B., et al., Biocompatibility of a new PD solution for Japan, Reguneal, measured as in vitro proliferation of fibroblasts. Clin Exp Nephrol, 2018. 22(6): p. 1427-1436. DOI: https://doi.org/10.1007/s10157-018-1602-2
Sun, T., et al., Excessive salt intake increases peritoneal solute transport rate via local tonicity-responsive enhancer binding protein in subtotal nephrectomized mice. Nephrol Dial Transplant, 2019. 34(12): p. 2031-2042. DOI: https://doi.org/10.1093/ndt/gfz045
Seeger, H., et al., The potential role of NFAT5 and osmolarity in peritoneal injury. Biomed Res Int, 2015. 2015: p. 578453. DOI: https://doi.org/10.1155/2015/578453
Kuper, C., F.X. Beck, and W. Neuhofer, NFAT5 contributes to osmolality-induced MCP-1 expression in mesothelial cells. Mediators Inflamm, 2012. 2012: p. 513015. DOI: https://doi.org/10.1155/2012/513015
Goossen, K., et al., Icodextrin Versus Glucose Solutions for the Once-Daily Long Dwell in Peritoneal Dialysis: An Enriched Systematic Review and Meta-analysis of Randomized Controlled Trials. Am J Kidney Dis, 2020. 75(6): p. 830-846. DOI: https://doi.org/10.1053/j.ajkd.2019.10.004
Lin, A., et al., Randomized controlled trial of icodextrin versus glucose containing peritoneal dialysis fluid. Clin J Am Soc Nephrol, 2009. 4(11): p. 1799-804. DOI: https://doi.org/10.2215/CJN.02950509
de Moraes, T.P., et al., Icodextrin reduces insulin resistance in non-diabetic patients undergoing automated peritoneal dialysis: results of a randomized controlled trial (STARCH). Nephrol Dial Transplant, 2015. 30(11): p. 1905-11. DOI: https://doi.org/10.1093/ndt/gfv247
Li, P.K., et al., Randomized, controlled trial of glucose-sparing peritoneal dialysis in diabetic patients. J Am Soc Nephrol, 2013. 24(11): p. 1889-900. DOI: https://doi.org/10.1681/ASN.2012100987
Reimann, D., et al., Amino acid-based peritoneal dialysis solution stimulates mesothelial nitric oxide production. Perit Dial Int, 2004. 24(4): p. 378-84. DOI: https://doi.org/10.1177/089686080402400414
Tjiong, H.L., et al., Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J Am Soc Nephrol, 2005. 16(5): p. 1486-93. DOI: https://doi.org/10.1681/ASN.2004050402
Holmes, C.J. and T.R. Shockley, Strategies to Reduce Glucose Exposure in Peritoneal Dialysis Patients. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 2000. 20(2_suppl): p. 37-41. DOI: https://doi.org/10.1177/089686080002002S08
Bonomini, M., et al., L-carnitine is an osmotic agent suitable for peritoneal dialysis. Kidney Int, 2011. 80(6): p. 645-54. DOI: https://doi.org/10.1038/ki.2011.117
Gaggiotti, E., et al., Prevention of peritoneal sclerosis: a new proposal to substitute glucose with carnitine dialysis solution (biocompatibility testing in vitro and in rabbits). Int J Artif Organs, 2005. 28(2): p. 177-87. DOI: https://doi.org/10.1177/039139880502800215
Bonomini, M., et al., Effect of an L-carnitine-containing peritoneal dialysate on insulin sensitivity in patients treated with CAPD: a 4-month, prospective, multicenter randomized trial. Am J Kidney Dis, 2013. 62(5): p. 929-38. DOI: https://doi.org/10.1053/j.ajkd.2013.04.007
Bazzato, G., et al., Xylitol as osmotic agent in CAPD: an alternative to glucose for uremic diabetic patients? Trans Am Soc Artif Intern Organs, 1982. 28: p. 280-6.
Bonomini, M., et al., Effect of peritoneal dialysis fluid containing osmo-metabolic agents on human endothelial cells. Drug Des Devel Ther, 2016. 10: p. 3925-3932. DOI: https://doi.org/10.2147/DDDT.S117078
Piccapane, F., et al., A Novel Formulation of Glucose-Sparing Peritoneal Dialysis Solutions with l-Carnitine Improves Biocompatibility on Human Mesothelial Cells. Int J Mol Sci, 2020. 22(1). DOI: https://doi.org/10.3390/ijms22010123
Bonomini, M., et al., Rationale and design of ELIXIR, a randomized, controlled trial to evaluate efficacy and safety of XyloCore, a glucose-sparing solution for peritoneal dialysis. Perit Dial Int, 2025. 45(1): p. 17-25. DOI: https://doi.org/10.1177/08968608241274106
Herzog, R., et al., Dynamic O-linked N-acetylglucosamine modification of proteins affects stress responses and survival of mesothelial cells exposed to peritoneal dialysis fluids. J Am Soc Nephrol, 2014. 25(12): p. 2778-88. DOI: https://doi.org/10.1681/ASN.2013101128
Bartosova, M., et al., Alanyl-Glutamine Restores Tight Junction Organization after Disruption by a Conventional Peritoneal Dialysis Fluid. Biomolecules, 2020. 10(8). DOI: https://doi.org/10.3390/biom10081178
Ferrantelli, E., et al., The dipeptide alanyl-glutamine ameliorates peritoneal fibrosis and attenuates IL-17 dependent pathways during peritoneal dialysis. Kidney Int, 2016. 89(3): p. 625-35. DOI: https://doi.org/10.1016/j.kint.2015.12.005
Herzog, R., et al., Peritoneal Dialysis Fluid Supplementation with Alanyl-Glutamine Attenuates Conventional Dialysis Fluid-Mediated Endothelial Cell Injury by Restoring Perturbed Cytoprotective Responses. Biomolecules, 2020. 10(12). DOI: https://doi.org/10.3390/biom10121678
Herzog, R., et al., Functional and Transcriptomic Characterization of Peritoneal Immune-Modulation by Addition of Alanyl-Glutamine to Dialysis Fluid. Sci Rep, 2017. 7(1): p. 6229. DOI: https://doi.org/10.1038/s41598-017-05872-2
Kratochwill, K., et al., Addition of Alanyl-Glutamine to Dialysis Fluid Restores Peritoneal Cellular Stress Responses - A First-In-Man Trial. PLoS One, 2016. 11(10): p. e0165045. DOI: https://doi.org/10.1371/journal.pone.0165045
Kratochwill, K., et al., Alanyl-glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids. Nephrol Dial Transplant, 2012. 27(3): p. 937-46. DOI: https://doi.org/10.1093/ndt/gfr459
Vychytil, A., et al., A randomized controlled trial of alanyl-glutamine supplementation in peritoneal dialysis fluid to assess impact on biomarkers of peritoneal health. Kidney Int, 2018. 94(6): p. 1227-1237. DOI: https://doi.org/10.1016/j.kint.2018.08.031
Balzer, M.S., et al., SGLT2 Inhibition by Intraperitoneal Dapagliflozin Mitigates Peritoneal Fibrosis and Ultrafiltration Failure in a Mouse Model of Chronic Peritoneal Exposure to High-Glucose Dialysate. Biomolecules, 2020. 10(11). DOI: https://doi.org/10.3390/biom10111573
Shentu, Y., et al., Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-beta/Smad signaling. Int Immunopharmacol, 2021. 93: p. 107374. DOI: https://doi.org/10.1016/j.intimp.2021.107374
Shi, P., et al., The antioxidative effects of empagliflozin on high glucose‑induced epithelial-mesenchymal transition in peritoneal mesothelial cells via the Nrf2/HO-1 signaling. Ren Fail, 2022. 44(1): p. 1528-1542. DOI: https://doi.org/10.1080/0886022X.2022.2118066
Zhou, Y., et al., SGLT-2 inhibitors reduce glucose absorption from peritoneal dialysis solution by suppressing the activity of SGLT-2. Biomed Pharmacother, 2019. 109: p. 1327-1338. DOI: https://doi.org/10.1016/j.biopha.2018.10.106
Lho, Y., 2nd, et al., Empagliflozin attenuates epithelial-to-mesenchymal transition through senescence in peritoneal dialysis. Am J Physiol Renal Physiol, 2024. 327(3): p. F363-F372. DOI: https://doi.org/10.1152/ajprenal.00028.2024
Martus, G., et al., SGLT2 inhibition does not reduce glucose absorption during experimental peritoneal dialysis. Perit Dial Int, 2021. 41(4): p. 373-380. DOI: https://doi.org/10.1177/08968608211008095
Vorobiov, M., et al., Blockade of sodium-glucose co-transporters improves peritoneal ultrafiltration in uraemic rodent models. Perit Dial Int, 2024. 44(1): p. 48-55. DOI: https://doi.org/10.1177/08968608231165865
Doi, Y., et al., Effects of sodium-glucose co-transporter 2 inhibitors on ultrafiltration in patients with peritoneal dialysis: a protocol for a randomized, double-blind, placebo-controlled, crossover trial (EMPOWERED). Clin Exp Nephrol, 2024. 28(7): p. 629-635. DOI: https://doi.org/10.1007/s10157-024-02467-w
Pitaraki, E., et al., 2-Deoxy-glucose ameliorates the peritoneal mesothelial and endothelial barrier function perturbation occurring due to Peritoneal Dialysis fluids exposure. Biochem Biophys Res Commun, 2024. 693: p. 149376. DOI: https://doi.org/10.1016/j.bbrc.2023.149376
Si, M., et al., Inhibition of hyperglycolysis in mesothelial cells prevents peritoneal fibrosis. Sci Transl Med, 2019. 11(495). DOI: https://doi.org/10.1126/scitranslmed.aav5341
Herzog, R., et al., Lithium preserves peritoneal membrane integrity by suppressing mesothelial cell alphaB-crystallin. Sci Transl Med, 2021. 13(608). DOI: https://doi.org/10.1126/scitranslmed.aaz9705
Kopytina, V., et al., Steviol glycosides as an alternative osmotic agent for peritoneal dialysis fluid. Front Pharmacol, 2022. 13: p. 868374. DOI: https://doi.org/10.3389/fphar.2022.868374
Mendelson, A.A., et al., Hyperbranched polyglycerol is an efficacious and biocompatible novel osmotic agent in a rodent model of peritoneal dialysis. Perit Dial Int, 2013. 33(1): p. 15-27. DOI: https://doi.org/10.3747/pdi.2012.00148
Nishimura, H., et al., Evaluation of taurine as an osmotic agent for peritoneal dialysis solution. Perit Dial Int, 2009. 29(2): p. 204-16. DOI: https://doi.org/10.1177/089686080902900216
Freida, P., et al., The contribution of combined crystalloid and colloid osmosis to fluid and sodium management in peritoneal dialysis. Kidney Int Suppl, 2008(108): p. S102-11. DOI: https://doi.org/10.1038/sj.ki.5002610
Leypoldt, J.K., et al., Low-Polydispersity Glucose Polymers as Osmotic Agents for Peritoneal Dialysis. Perit Dial Int, 2015. 35(4): p. 428-35. DOI: https://doi.org/10.3747/pdi.2013.00232
Rutkowski, B., et al., Low-Sodium Versus Standard-Sodium Peritoneal Dialysis Solution in Hypertensive Patients: A Randomized Controlled Trial. Am J Kidney Dis, 2016. 67(5): p. 753-61. DOI: https://doi.org/10.1053/j.ajkd.2015.07.031

Full Text
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Celeste Smeys, Freya Van Hulle, Florine Janssens, Karlien Francois

This work is licensed under a Creative Commons Attribution 4.0 International License.