Evolution des patients présentant une maladie des emboles de cholestérol traités par dialyse péritonéale : étude rétrospective à partir du registre du RDPLF

Auteurs

DOI :

https://doi.org/10.25796/bdd.v5i1.65303

Mots-clés :

emboles de cholesterol, dialyse péritonéale, survie, dialyse, insuffisance rénale

Résumé

La maladie des emboles de cholestérol (MEC) est une maladie systémique, caractérisée par une ischémie tissulaire et une micro-inflammation, liée à l’occlusion des artérioles par des micro-emboles en provenance de plaques athéromateuses ulcérées. Le rein est parmi les organes les plus touchés avec souvent nécessité de recours à la dialyse. Les anticoagulants augmentant le risque d’emboles, la dialyse péritonéale peut avoir théoriquement un avantage. Notre étude examine le devenir d’une cohorte de patients avec MEC traités par dialyse péritonéale (DP).

A partir de la base de données du Registre de Dialyse Péritonéale de Langue Française (RDPLF), entre le 1/1/1995 et le 31/12/2021, nous avons sélectionné les patients traités par DP depuis >90jours et ayant un âge >18 ans. Sur la base des variables suivantes : autonomie des patients, diabète, IMC, indice de Charlson modifié, âge, sexe, traitement avant DP, causes de décès, causes de transferts en hémodialyse et péritonite, trois types de survie ont été estimées (patient, technique stricte et technique composite). Après ajustement par les scores de propension et prise en compte des risques compétitifs, 2 groupes de patients ont été constitués sur la base de la néphropathie de base : groupe emboles vs groupe autres.

La survie patient et la survie technique stricte ne sont pas associées au type de néphropathie (MEC versus autres). La survie technique composite (non censurée pour les décès et transferts en hémodialyse)  n’est associée à la néphropathie par emboles de cholestérol que dans l’analyse multivariée ajustée sur le diabète, l’autonomie et l’âge du patients au début de la dialyse (p=0.011 ; IC95% [0.736 [0.581-0.931]]).

 

Notre étude à partir de la base de données du RDPLF montre l’absence de différence de survie technique et patient dans une cohorte de patients avec MEC vs un groupe contrôle. Elle  confirme aussi que la DP peut représenter un choix adéquat au cours de cette pathologie.

INTRODUCTION

Cholesterol emboli disease (CCE) is a systemic disease linked to diffuse atherosclerosis belonging to crystallopathies of intrinsic origin. Tissue ischemia is related to arteriolar occlusion linked to microemboli from ulcerated atheroma plaques. However, the pathophysiological mechanism also calls for the existence of micro-inflammation[1];[2];[3]. Factors favoring ulceration of atherosclerotic plaques are regularly found, but more frequently, the cause is secondary to endovascular diagnostic maneuvers[4];[5];[6]. Since the diagnosis of the disease is based solely on clinical and sometimes morpho-histological criteria, this pathology remains, perhaps, underdiagnosed, and its incidence varies according to the series in the literature[4];[5].

The kidney is among the most affected organs, and usually, depending on the mode of presentation, three types of damage are described, but all stages of chronic renal disease (CRD) remain concerned[7];[8];[9];[10];[11];[12];[13];[14]. The evolution of CCE is often pejorative, with the need for recourse to treatment by dialysis in 20-30% of patients, which is much more frequent if renal insufficiency preexists with the appearance of the disease. Mortality, which is most often of cardiovascular origin, is also high, although it seems to be reduced if the supportive treatment is intensive. The other risk factors found that can worsen the prognosis are age, diabetes, and extra-renal manifestations[4];[5];[7];[8];[9];[10];[11].

To date, there are few data in the literature concerning the management and evolution of patients with cholesterol emboli disease with renal failure on dialysis. From the data of the RDPLF (French Language Peritoneal Dialysis Registry), we were interested in the outcome of patients treated by peritoneal dialysis (PD) who had an initial diagnosis of CCE.

PATIENTS AND METHODS

This is a retrospective observational study based on the database of the RDPLF, the description and mode of operation of which are described elsewhere[15];[16].

All patients from mainland France, aged over 18, with chronic renal failure, who had been on treatment with peritoneal dialysis for at least 3 months between January 1, 1995, and December 31, 2021, were included. Patients treated with peritoneal dialysis for cardio-renal syndrome were excluded from the study.

Two groups of patients were created according to the diagnosis of the main nephropathy: those whose renal failure was consecutive to a CCE (emboli group) numbering 128, and those treated by peritoneal dialysis for another nephropathy (other group), numbering 15,180.

The variables analyzed were:

  • Patient autonomy (yes/no)
  • Diabetes treated (yes/no)
  • Body mass index (BMI) (BMIs below 14 or above 35 were excluded from the study)
  • Modified Charlson index (i.e. not taking age into account) (values less than 2 were considered unstated because they were incompatible with the diagnosis of renal insufficiency, which implies a minimum of 2)
  • age (years)
  • sex
  • treatment before PD (untreated, hemodialysis, transplanted)
  • causes of death (discontinuations of treatment for transfers to palliative care were grouped together with deaths)
  • causes of hemodialysis transfers
  • peritonitis (the history of at least one episode of peritonitis or not was coded in a binary way, yes/no)

Three types of PD cessation were estimated (Table I): (1) patient survival (PS): for the study of this survival, only deaths and discontinuations for palliative treatment were not censored (transfers to hemodialysis, transplants, and end of follow-up were censored); (2) strict technical survival (STS): only hemodialysis transfers were not censored (deaths, transplants, and end of follow-up were censored); and (3) composite technical survival (CTS): deaths, discontinuation for palliative care, and transfers to hemodialysis were not censored (the end of follow-up and transplantation were censored).

Causes of PD endPSSTS

CTS

Palliative treatmenteventcompeting eventevent
Deatheventcompeting eventevent
End of follow up

censor

censorcensor
Transferred to hemodialysiscompeting eventeventevent
Transplantedcompeting eventcompeting eventcompeting event
Table I.Description of the population before matching

METHODS AND STATISTICAL ANALYSIS

This was a real-life cohort study; the sample size was determined by the number of patients included in the RDPLF registry with CCE. Demographic, diagnostic, clinicopathologic, and disease-specific data were retrieved prospectively for each patient entered into the database. The missing data for the variables diabetes (n=16: 0.11%), treatment before PD (n=63 patients: 0.42%), autonomy (n=9 patients: 0.06%), and modified Charlson (n=3886 patients: 22%) were completed using the multiple imputation method using R’s “mice” package[17]. To minimize discrepancies between significantly different baseline characteristics between the two study groups, matching using a 1:1 ratio propensity score was performed. The propensity score was calculated using a logistic regression model based on the following variables: sex; diabetes; treatment before PD; autonomy; peritonitis and age of the patient at the start of peritoneal dialysis. Qualitative variables were presented as frequencies and percentages. Continuous variables were described by extreme, mean, and median values; quartiles; and standard deviations. Qualitative data comparisons were made using Chi-square or Fisher’s exact tests. Quantitative data were compared using Student’s T test or the Mann-Whitney U test. The median follow-up and its 95% CI were calculated using the Schemper method[18]. The competitive risks method was used to analyze the previously defined delays: PS, STS, and CTS between the 2 groups studied. Univariate and multivariate analyses between the groups considered were carried out using the Fine and Gray model[19]. All statistical analyses

.....

Références

Mulay SR, Anders HJ. Crystallopathies. N Engl J Med. 2016;374(25):2465-2476. DOI: https://doi.org/10.1056/NEJMra1601611

Mulay SR, Anders HJ. Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat Rev Nephrol. 2017;13(4):226-240 DOI: https://doi.org/10.1038/nrneph.2017.10

Shi C, Kim T, Steiger S, et al. Crystal Clots as Therapeutic Target in Cholesterol Crystal Embolism. Circ Res. 2020;126(8):e37-e52. DOI: https://doi.org/10.1161/CIRCRESAHA.119.315625

Ozkok A. Cholesterol-embolization syndrome: current perspectives. Vasc Health Risk Manag. 2019;15:209-220. DOI: https://doi.org/10.2147/VHRM.S175150

Denis Le Seve J, Gourraud Vercel C, Connault J, Artifoni M. État des lieux de la maladie des emboles de cholestérol [Update on cholesterol crystal embolism]. Rev Med Interne. 2020;41(4):250-257. DOI: https://doi.org/10.1016/j.revmed.2020.02.002

Tanaka H, Yamana H, Matsui H, Fushimi K, Yasunaga H. Proportion and risk factors of cholesterol crystal embolization after cardiovascular procedures: a retrospective national database study. Heart Vessels. 2020;35(9):1250-1255. DOI: https://doi.org/10.1007/s00380-020-01593-1

Scolari F, Tardanico R, Zani R, et al. Cholesterol crystal embolism: A recognizable cause of renal disease. Am J Kidney Dis. 2000;36(6):1089-1109 DOI: https://doi.org/10.1053/ajkd.2000.19809

Meyrier A. Cholesterol crystal embolism: diagnosis and treatment. Kidney Int. 2006;69(8):1308-1312. DOI: https://doi.org/10.1038/sj.ki.5000263

Scolari F, Ravani P, Gaggi R, et al. The challenge of diagnosing atheroembolic renal disease: clinical features and prognostic factors. Circulation. 2007;116(3):298-304. DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.680991

Scolari F, Ravani P. Atheroembolic renal disease. Lancet. 2010;375(9726):1650-1660. DOI: https://doi.org/10.1016/S0140-6736(09)62073-0

Li X, Bayliss G, Zhuang S. Cholesterol Crystal Embolism and Chronic Kidney Disease. Int J Mol Sci. 2017;18(6):1120. DOI: https://doi.org/10.3390/ijms18061120

Piccoli GB, Fenoglio R, Colla L, et al. Cholesterol crystal embolism syndrome in dialysis patients: an emerging clinical diagnosis?. Blood Purif. 2006;24(5-6):433-438. DOI: https://doi.org/10.1159/000095359

Matsui K, Mochida Y, Ishioka K, et al. A case of enteric peritonitis in a patient with stage 5 kidney disease due to cholesterol crystal embolization. Perit Dial Int. 2020;40(2):220-221 DOI: https://doi.org/10.1177/0896860819887293

González AP, Juega J, Vazquez C, et al. Late Onset of Cholesterol Embolism Leading to Graft Failure After Renal Transplantation: Report of Two Cases. Transplant Proc. 2015;47(8):2361-2363. DOI: https://doi.org/10.1016/j.transproceed.2015.09.005

Verger C, Ryckelynck JP, Duman M, Veniez G, Lobbedez T, Boulanger E, Moranne O. French peritoneal dialysis registry (RDPLF): outline and main results. Kidney Int Suppl. 2006 Nov;(103):S12-20. doi: 10.1038/sj.ki.5001911. Erratum in: Kidney Int Suppl. 2007 Jan;71(1):87. Fabre, E [added]. DOI: https://doi.org/10.1038/sj.ki.5002051

Verger C, Fabre E, Veniez G, Padernoz MC. Synthetic 2018 data report of the French Language Peritoneal Dialysis and Home Hemodialysis Registry (RDPLF). Bull Dial Domic [Internet]. 2019Apr.10 [cited 2022Feb.25];2(1):1-10. Available from: https://doi.org/10.25796/bdd.v2i1.19093 DOI: https://doi.org/10.25796/bdd.v2i1.19093

White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med 2011;30). 377-399 DOI: https://doi.org/10.1002/sim.4067

Schemper M, Smith TL. A note on quantifying follow-up in studies of failure time. Control Clin Trials. 1996 Aug;17(4):343-6 DOI: https://doi.org/10.1016/0197-2456(96)00075-X

. Fine J and Gray R-J. A Proportional Hazards Model for the Subdistribution of a Competing Risk, Journal of the American Statistical Association, Vol. 94, No. 446 (Jun., 1999), pp. 496-509 DOI: https://doi.org/10.1080/01621459.1999.10474144

Gillerot G, Sempoux C, Pirson Y, Devuyst O. Which type of dialysis in patients with cholesterol crystal embolism?. Nephrol Dial Transplant. 2002;17(1):156-158. DOI: https://doi.org/10.1093/ndt/17.1.156

Ravani P, Gaggi R, Rollino C, et al. Lack of association between dialysis modality and outcomes in atheroembolic renal disease. Clin J Am Soc Nephrol. 2010;5(3):454-459. DOI: https://doi.org/10.2215/CJN.06590909

Indications et non-indications de la dialyse péritonéale chronique chez l’adulte RECOMMANDATION DE BONNE PRATIQUE - Octobre 2008 HAS. [Internet, cited 2022Feb.25]; available from

https://www.has-sante.fr/jcms/c_702938/fr/dialyse-peritoneale-chronique-chez-l-adulte-argumentaire

Soumis

2022-03-08

Accepté

2022-03-19

Publié

2022-04-06

Comment citer

1.
Testa A, Chamorey E, Lavainne F, Verger C. Evolution des patients présentant une maladie des emboles de cholestérol traités par dialyse péritonéale : étude rétrospective à partir du registre du RDPLF. Bull Dial Domic [Internet]. 6 avr. 2022 [cité 1 nov. 2025];5(1):1-11. Disponible sur: https://bdd.rdplf.org/index.php/bdd/article/view/65303