Intérêt des stabilisateurs du HIF en dialyse à domicile
DOI :
https://doi.org/10.25796/bdd.v6i1.77073Mots-clés :
Anemia treatment, ESA, HIF stabilizers, home dialysisRésumé
Les dustats ou stabilisateurs du Hypoxia-inducible factor (HIF) sont des molécules de petite taille données par voie orale avec une très faible élimination rénale (sans adaptation posologique au cours de la maladie rénale chronique (MRC)), analogues avec effet antagoniste du 2-oxoglutarate, substrat naturel de la HIF-Prolyl hydroxylase à l’origine de l’inhibition de cet enzyme. Il en résulte un état de simulation d’hypoxie permettant l’accumulation de HIF-α dans les cellules puis une érythropoïèse coordonnée avec synthèse d’érythropoïétine, diminution de la production hépatique d’hepcidine et optimisation du métabolisme martial. Les stabilisateurs du HIF ont fait uniquement l’objet d’études cliniques de non-infériorité versus les agents stimulant l’érythropoïèse (ASE). Le critère principal de jugement pour les essais thérapeutiques de toutes ces différentes molécules était la variation du taux d’hémoglobine. Les dustats corrigent de façon similaire aux ASE l’anémie de la MRC avancée non dialysée et dialysée.
Six molécules de dustat sont à un stade avancé de développement : le Roxadustat, le Daprodustat, le Vadadustat, l’Enarodustat, le Desidustat et le Molidustat. Seul le Roxadustat ou Evrenzo®, possède actuellement une autorisation de mise sur le marché (AMM) en Europe obtenue en août 2021. Seulement deux études ont été dédiées à la dialyse péritonéale l’une avec le Roxadustat, l’autre avec le Daprodustat. La dialyse à domicile apparaît être une indication élective des stabilisateurs du HIF du fait de leur absence de nécessité de la chaîne du froid et de leur impact positif sur le métabolisme martial et des difficultés et imperfections du traitement actuel de l’anémie par les ASE et les dérivés du fer dans cette population de malades.
1. Reminder on erythropoiesis stimulating agents
Recombinant erythropoietin (EPO), introduced in 1987, represented a therapeutic revolution in the management of anemia in chronic kidney disease (CKD), transforming the quality of life of dialysis patients and improving the mortality and morbidity associated with this severe anemia . It is a pathophysiological treatment because the anemia in CKD is mainly related to a significant decrease in erythropoietin production by the diseased kidneys, as evinced by the sharply decreased levels of circulating erythropoietin during CKD; moreover, there is a parallel between the severity of renal failure and the decrease in circulating erythropoietin levels(Panjeta et al., 2017). Erythropoietin is a growth factor acting on the bone marrow, which is necessary for the early stages of erythropoiesis; EPO thus acts on burst-forming unit-erythroid cells (BFU-E cells), colony-forming unit-erythroid cells (CFU-E cells) and proerythroblasts(Besarab et al., 2009)via a specific receptor. It should be noted that in addition to this early EPO-dependent phase, erythropoiesis has a later phase dependent on the incorporation of iron into the heme nucleus of hemoglobin (Figure 1).
Figure 1.EPO and iron in erythropoiesisFigure according to Besarab’s article,(Besarab et al., 2009).
In addition to its primary action on erythropoiesis, EPO is also a pleiotropic growth factor acting during fetal development, not only on erythropoiesis but also on angiogenesis, fetal brain development, and also neuronal, retinal and vascular protection, and wound healing in adulthood(Vaziri & Ateshkadi, 1999). EPO production takes place in the liver during fetal life and in the kidneys from birth. It has recently been shown that during CKD, the liver takes over from the deficient kidneys in the synthesis of erythropoietin, especially as renal function is impaired(Seigneux S et al., 2016).
2. Erythropoietin synthesis is stimulated by hypoxia and HIF
EPO production occurs in the kidney (and liver) in response to changes in tissue oxygenation or hypoxia(Koury & Haase, 2015)[6]. Hypoxia leads to transcription of the erythropoietin gene in peritubular interstitial fibroblasts and in the liver(Seigneux S et al., 2016)[6]. EPO promotes erythropoiesis in pluripotent bone marrow cells committed to the erythroblastic lineage (BFU-E and CFU-E) and proerythroblasts [6]. The resulting increase in circulating erythrocytes and hemoglobin leads to improved tissue oxygenation [6]. The hypoxia inducible factor (HIF) transcription factor in EPO-producing kidney cells regulates erythropoietin production in a hypoxia-inducible manner (Figure 2)(Koury & Haase, 2015).
Figure 2.Synthesis of EPO. Figure adapted from: 1. Koury MJ and Haase VH,(Koury & Haase, 2015), 2. Locatelli F, et al,(Locatelli et al., 2017-01-25).
The level of HIF-α is regulated by specific enzymes called HIF-prolyl hydroxylase (HIF-PHD) that trigger its degradation at the proteasome. There are three HIF-PHD enzymes in humans that hydroxylate HIF-α and thus regulate its stability: HIF-PHD1, HIF-PHD2, and HIF-PHD3. The enzyme HIF-PHD2 is considered the primary regulator of HIF under normal oxygenation conditions(Locatelli et al., 2017-01-25).
The activation of HIF is a physiological response of the body in the presence of low oxygen levels (hypoxia). Indeed, at normal oxygen levels, HIF-prolyl hydroxylase remains abundant. It causes the degradation of HIF-α and thus prevents the activation of a hypoxic response. In contrast, during periods of hypoxia (low oxygen), HIF-prolyl hydroxylase is inactive, because oxygen is required for the enzymatic reaction, and HIF-α will therefore accumulate. HIF-α then dimerizes with constitutively expressed HIF-β, and the dimer moves to the nucleus, allowing transcription of key genes that manage hypoxia(Locatelli et al., 2017-01-25). Several hundred genes are direct targets of HIF; these genes play a role in cell migration, cell growth and cycle, angiogenesis, vasomotor regulation, glucose metabolism and availability, and barrier functions, as well as EPO synthesis and iron availability for erythropoiesis (Figure 3)(Schödel & Ratcliffe, 2019).
Figure 3.HIF activation .Figure adapted from Locatelli F, et al,(Locatelli et al., 2017-01-25)[7].
3. General information on HIF stabilizers or Dustats
3.1 The different molecules
While there are about a dozen molecules in development, only six are at an advanced stage.
The first molecule in this new class is Roxadustat or Evrenzo®, developed by the American biotechnology company Fibrogen (San Francisco, USA) and produced by Astellas Pharma (Tokyo, Japan) in Japan, Asia and Europe and by AstraZeneca (Cambridge, UK) in North America. Evrenzo® obtained European marketing authorization (AMM) in August 2021(Source Title, n.d.).
The second molecule in the dustat class is Daprodustat, developed by the British laboratory GlaxoSmithKline (GSK, Brentford, UK) which just obtained AMM in the USA in February 2023(Food & Administration, n.d.). The four other molecules currently in advanced development are Vadadustat (Vafseo®) from Akebia Therapeutics (Cambridge, Massachusetts, USA) and Otsuka Pharmaceutical (Chiyoda, Tokyo, Japan)); Enarodustat (Enaroy® from Kyowa Hakko Kirin, Tokyo, Japan); Desidustat (Oxemia® from Zydus Cadila Healthcare, Ahmedabad, India); and, finally, Molidustat from Bayer (Leverkusen, Germany)(Vareesangthip et al., 2023)(Locatelli & Del Vecchio, 2022).
3.2 Commonalities in the development and clinical trials of HIF stabilizers
These are orally administered molecules (as opposed to the intravenous and subcutaneous routes for ESAs) which have only been the subject of non-inferiority clinical studies compared with first-generation ESAs (Eprex®, Neorecormon®) and second-generation ESAs (Aranesp®)(Vareesangthip et al., 2023)(Locatelli & Del Vecchio, 2022).
The primary endpoint for the therapeutic trials of all these different molecules was the change in hemoglobin level(Vareesangthip et
Références
Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med. 1987;316(2):73-78. doi: 10.1056/NEJM198701083160203.
Panjeta M, Tahirović I, Sofić E, Ćorić J, Dervišević A. Interpretation of erythropoietin and haemoglobin levels in patients with various stages of chronic kidney disease. J Med Biochem. 2017;36(2):145-152. doi: 10.1515/jomb-2017-0014.
Besarab A, Hörl WH, Silverberg D. Iron metabolism, iron deficiency, thrombocytosis, and the cardiorenal anemia syndrome. Oncologist. 2009;14(Suppl 1):22-23. doi: 10.1634/theoncologist.2009-S1-22.
Vaziri ND, Ateshkadi A. Effects of epoetin on vascular biology. Nephrol Dial Transplant. 1999;14 (suppl 2): 46-49. doi: 10.1093/ndt/14.suppl_2.46.
De Seigneux S, Meinild Lundby AK, Berchtold L, Berg AH, Saudan P, Lundby C. Increased synthesis of liver erythropoietin with CKD. J Am Soc Nephrol. 2016;27(8):2265-2269. doi: 10.1681/ASN.2015050508. Epub 2016 Jan 12.
Koury MJ, Haase VH. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat Rev Nephrol. 2015;11(7):394-410. doi: 10.1038/nrneph.2015.82. Epub 2015 Jun 9.
Locatelli F, Fishbane S, Block GA, Macdougall IC. Targeting Hypoxia-Inducible Factors for the Treatment of Anemia in Chronic Kidney Disease Patients. Am J Nephrol. 2017;45(3):187-199. doi: 10.1159/000455166. Epub 2017 Jan 25.
Schödel J, Ratcliffe PJ. Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol. 2019;15(10):641-659. doi: 10.1038/s41581-019-0182-z. Epub 2019 Sep 5.
European Public Assessment Report (EPAR) EMA Evrenzo. URL accessed 03/04/2023: https://www.ema.europa.eu/en/medicines/human/EPAR/evrenzo.
US Food and Drug Administration. FDA approval Daprodustat. URL accessed 03/04/2023: https://www.fda.gov/news-events/press-announcements/fda-approves-first-oral-treatment-anemia-caused-chronic-kidney-disease-adults-dialysis.
Vareesangthip K, Satirapoj B, Noppakun K, et al. The Role of Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors for anemia in chronic kidney disease: a narrative review. Int J Nephrol Renovasc Dis. 2023 in press.
Locatelli F, Del Vecchio L. Hypoxia-Inducible Factor–Prolyl Hydroxyl Domain Inhibitors: From Theoretical Superiority to Clinical Noninferiority Compared with Current ESAs? J Am Soc Nephrol. 2022;33(11):1966-1979. doi: 10.1681/ASN.2022040413. Epub 2022 Aug 30.
Provenzano R, Besarab A, Wright S, et Al. Roxadustat (FG-4592) Versus Epoetin Alfa for Anemia in Patients Receiving Maintenance Hemodialysis: A Phase 2, Randomized, 6- to 19-Week, Open-Label, Active-Comparator, Dose-Ranging, Safety and Exploratory Efficacy Study. Am J Kidney Dis. 2016;67(6):912-924. doi: 10.1053/j.ajkd.2015.12.020. Epub 2016 Feb 2.
Tang M, Zhu C, Yan T, Zhou Y, Lv Q, Chuan J. Safe and Effective Treatment for Anemic Patients with Chronic Kidney Disease: An Updated Systematic Review and Meta-Analysis on Roxadustat. Front. Pharmacol. 2021;12:658079. doi: 10.3389/fphar.2021.658079.
European Medicines Agency, Evrenzo, URL accessed on 03/04/2023: https://www.ema.europa.eu/en/medicines/human/EPAR/evrenzo#overview-section
Avis 30/03/2022 HAS Evrenzo. URL accessed on 03/04/2023https://www.has-sante.fr/upload/docs/evamed/CT-19516_EVRENZO_PIC_INS_AVIS_DEF_CT19516.pdf
Fu Z, Geng X, Chi K, et Al. Efficacy and safety of Daprodustat versus rhEPO for anemia in patients with chronic kidney disease: a meta-Analysis and trial sequential analysis. Front Pharmacol. 2022;13:746265. doi: 10.3389/fphar.2022.746265. eCollection 2022.
Committee for Medicinal Products for human Use (CHMP) positive opinion for Vadadustat. URL accessed on 03/04/2023:
https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-vafseo_en.pdf
Xiong L, Zhang H, Guo Y, Song Y, Tao Y. Efficacy and safety of Vadadustat for anemia in patients with chronic kidney disease: a systematic review and meta-analysis. Front Pharmacol. 2022;12:795214. doi: 10.3389/fphar.2021.795214. eCollection 2021.
Akizawa T, Otsuka T, Reusch M, Ueno M. Intermittent oral dosing of Roxadustat in peritoneal dialysis chronic kidney disease patients with anemia: a randomized, phase 3, multicenter, open-label study. Ther Apher Dial. 2020;24(2):115-125. doi: 10.1111/1744-9987.12888. Epub 2019 Jul 31.
Dasgupta I, Mallett SA, Bhatt PR, et Al. Efficacy and cardiovascular safety of Daprodustat for the management of renal anemia in peritoneal dialysis patients: a pre-specified analysis of the ASCEND-D Trial. Poster n° TH-PO688. American Society of Nephrology Annual Meeting, Orlando, Nov 2022. URL accessed on 03/04/2023: https://asn.scientificposters.com/epsAbstractASN.cfm?id=1.
Babitt JL, Eisenga MF, Haase VH, et Al. Controversies in optimal anemia management: conclusions from a kidney disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int. 2021;99(6):1280–1295. doi: 10.1016/j.kint.2021.03.020. Epub 2021 Apr 8.
Téléchargements
Soumis
Publié
Comment citer
Numéro
Rubrique
Licence
© Guy Rostoker 2023

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .







