Guide de pratique clinique pour la prévention et la prise en charge des infections associées à la dialyse péritonéale chez l'enfant : mise à jour 2024

Traduction Française des recommandations pédiatriques de l'ISPD concernant les infections. Mise à jour 2024

Auteurs

DOI :

https://doi.org/10.25796/bdd.v8i2.87071

Mots-clés :

pédiatrie, ISPD guidelines, traduction française, infection, dialyse péritonéale

Résumé

Dans le cadre d’un accord de partenariat entre l’ISPD et le RDPLF ( https://doi.org/10.25796/bdd.v4i3.63033 ), le RDPLF est le traducteur français officiel des recommandations de l’ISPD.

Le RDPLF s’engage à traduire fidèlement le texte original sous la responsabilité de néphrologues connus pour leur expertise dans le domaine. La traduction est disponible sur le site de l’ISPD et dans le Bulletin de la Dialyse à Domicile.

Cette traduction est, comme l’original, librement téléchargeable sous licence copyright CC By 4.0 https://creativecommons.org/licenses/by-nc/4.0/.

Cette traduction est destinée à aider les professionnels de la communauté francophone à prendre connaissance des recommandations de l’ISPD dans leur langue maternelle. Toute référence dans un article doit se faire au texte original en accès libre :  https://doi.org/10.1177/08968608241274096.  Dans les articles rédigés pour des revues françaises, conserver la référence à la version originale anglaise ci-dessus, mais ajouter « traduction française : https://doi.org/10.25796/bdd.v8i2.87071

Références

1. Warady BA, Schaefer F, Holloway M, et al. Consensus guidelines for the treatment of peritonitis in pediatric patients receiving peritoneal dialysis. Perit Dial int 2000; 20: 610–624. DOI: https://doi.org/10.1177/089686080002000607

2. Warady BA, Bakkaloglu s, Newland j, et al. Consensus guidelines for the prevention and treatment of catheter-related infections and peritonitis in pediatric patients receiving peritoneal dialysis: 2012 update. Perit Dial int 2012; 32: S32–S86. DOI: https://doi.org/10.3747/pdi.2011.00091

3. Guyatt GH, Oxman AD, Kunz R, et al. GRADE Guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol 2011; 64: 395–400. 20101230. DOI: https://doi.org/10.1016/j.jclinepi.2010.09.012

4. Caring for Australians with Renal I. The Cari guidelines. Evidence for peritonitis treatment and prophylaxis: peritoneal dialysis-associated peritonitis in children. Nephrology (Carlton) 2004; 9: S45–S51. DOI: https://doi.org/10.1111/j.1440-1797.2004.00297.x

5. Caring for Australians with Renal I. The Cari guidelines. Evidence for peritonitis treatment and prophylaxis: treatment of peritoneal dialysis-associated fungal peritonitis. Nephrology (Carlton) 2004; 9: S78–S81. DOI: https://doi.org/10.1111/j.1440-1797.2004.00293.x

6. Chua A, Warady B. Chronic peritoneal dialysis in children, https://medilib.ir/uptodate/show/16400. 2023. DOI: https://doi.org/10.1007/978-3-030-62087-5_29

7. Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic reviews. Syst rev 2016; 5: 20161205. DOI: https://doi.org/10.1186/s13643-016-0384-4

8. software Csr. Veritas Health Innovation. Melbourne. Australia. 2022.

9. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71. 20210329. DOI: https://doi.org/10.1136/bmj.n71

10. Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016; 355: i4919. 20161012. DOI: https://doi.org/10.1136/bmj.i4919

11. Murad MH, Sultan S, Haffar S, et al. Methodological quality and synthesis of case series and case reports. BMJ Evid Based Med 2018; 23: 60–63. 20180202. DOI: https://doi.org/10.1136/bmjebm-2017-110853

12. Schunemann HJ, Mustafa RA, Brozek J, et al. GRADE Guidelines: 21 part 1. Study design, risk of bias, and indirectness in rating the certainty across a body of evidence for test accuracy. J Clin Epidemiol 2020; 122: 129–141. 20200212. DOI: https://doi.org/10.1016/j.jclinepi.2019.12.020

13. Schunemann HJ, Mustafa RA, Brozek J, et al. GRADE Guidelines: 21 part 2. Test accuracy: inconsistency, imprecision, publication bias, and other domains for rating the certainty of evidence and presenting it in evidence profiles and summary of findings tables. J Clin Epidemiol 2020; 122: 142–152. 20200210. DOI: https://doi.org/10.1016/j.jclinepi.2019.12.021

14. Evidence Prime IIUM, editor. GRADEpro GDT. GRADEpro Guideline Development Tool [Software], 2015.

15. Beagley L. Educating patients: understanding barriers, learning styles, and teaching techniques. J Perianesth Nurs 2011; 26: 331–337. DOI: https://doi.org/10.1016/j.jopan.2011.06.002

16. Bernardini J, Price V, Figueiredo A, et al. Peritoneal dialysis patient training, 2006. Perit Dial int 2006; 26: 625–632. DOI: https://doi.org/10.1177/089686080602600602

17. Figueiredo AE, Bernardini J, Bowes E, et al. A syllabus for teaching peritoneal dialysis to patients and caregivers. Perit Dial int 2016; 36: 592–605. 20160225. DOI: https://doi.org/10.3747/pdi.2015.00277

18. Administration HRS. Health Literacy. 2022.

19. Auguste BL, Girsberger M, Kennedy C, et al. Are adverse events in newly trained home dialysis patients related to learning styles? A single-centre retrospective study from Toronto, Canada. BMJ Open 2020; 10: e033315. 20200120.

20. Holloway M, Mujais S, Kandert M, et al. Pediatric peritoneal dialysis training: characteristics and impact on peritonitis rates. Perit Dial Int 2001; 21: 401–404. DOI: https://doi.org/10.1177/089686080102100412

21. Begin B, Richardson T, Ehrlich J, et al. Training practices and peritonitis rates in children on maintenance peritoneal dialysis: results from the Standardizing Care to Improve Outcomes in Pediatric End Stage Kidney Disease (SCOPE) collaborative. Pediatr Nephrol 2023; 38: 3401–3406. 20230425. DOI: https://doi.org/10.1007/s00467-023-05975-1

22. Kamath N, Borzych-Duzalka D, Kaur A, et al. Pediatric peritoneal dialysis training program and its relationship to peritonitis: a study of the International Pediatric Peritoneal Dialysis Network. Pediatr Nephrol 2023; 38: 4111–4118. 20230705.

23. Neu AM, Miller MR, Stuart J, et al. Design of the standardizing care to improve outcomes in pediatric end stage renal disease collaborative. Pediatr Nephrol 2014; 29: 1477–1484. 20140724. DOI: https://doi.org/10.1007/s00467-014-2891-7

24. Sethna CB, Bryant K, Munshi R, et al. Risk factors for and outcomes of catheter-associated peritonitis in children: The SCOPE collaborative. Clin J Am Soc Nephrol 2016; 11: 1590–1596. 20160623. DOI: https://doi.org/10.2215/CJN.02540316

25. Ellis EN, Blaszak C, Wright S, et al. Effectiveness of home visits to pediatric peritoneal dialysis patients. Perit Dial Int 2012; 32: 419–423. 20110930. DOI: https://doi.org/10.3747/pdi.2010.00145

26. Alhameedi RS CJ. How are families taught to look after their children on peritoneal dialysis? Saudi J Kidney Dis Transpl 2016; 27: 29–36.

27. Li PK, Chow KM, Cho Y, et al. ISPD peritonitis guideline recommendations: 2022 update on prevention and treatment. Perit Dial Int 2022; 42: 110–153. DOI: https://doi.org/10.1177/08968608221080586

28. Teo S, Yuen TW, Cheong CW, et al. Structured re-training to reduce peritonitis in a pediatric peritoneal dialysis program: a quality improvement intervention. Pediatr Nephrol 2021; 36: 3191–3200. 20210402.

29. NAPRTCS. Annual Dialysis Report https://naprtcs.org, 2011.

30. Keswani M, Redpath Mahon AC, Richardson T, et al. Risk factors for early onset peritonitis: the SCOPE collaborative. Pediatr Nephrol 2019; 34: 1387–1394. 20190409. DOI: https://doi.org/10.1007/s00467-019-04248-0

31. Borzych-Duzalka D, Aki TF, Azocar M, et al. Peritoneal dialysis access revision in children: Causes, interventions, and outcomes. Clin J Am Soc Nephrol 2017; 12: 105–112. 20161129. DOI: https://doi.org/10.2215/CJN.05270516

32. Furth SL, Donaldson LA, Sullivan EK, et al. Peritoneal dialysis catheter infections and peritonitis in children: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Nephrol 2000; 15: 179–182.

33. Jones LL, Tweedy L, Warady BA. The impact of exit-site care and catheter design on the incidence of catheter-related infections. Adv Perit Dial 1995; 11: 302–305.

34. Zaritsky JJ, Hanevold C, Quigley R, et al. Epidemiology of peritonitis following maintenance peritoneal dialysis catheter placement during infancy: a report of the SCOPE collaborative. Pediatr Nephrol 2018; 33: 713–722. 20171117. DOI: https://doi.org/10.1007/s00467-017-3839-5

35. Swartz SJ, Neu A, Skversky Mason A, et al. Exit site and tunnel infections in children on chronic peritoneal dialysis: findings from the Standardizing Care to Improve Outcomes in Pediatric End Stage Renal Disease (SCOPE) Collaborative. Pediatr Nephrol 2018; 33: 1029–1035. 20180226.

36. Macchini F, Valade A, Ardissino G, et al. Chronic peritoneal dialysis in children: catheter related complications. A single centre experience. Pediatr Surg Int 2006; 22: 524–528. 20060516. DOI: https://doi.org/10.1007/s00383-006-1685-9

37. Lane JC, Warady BA, Feneberg R, et al. Relapsing peritonitis in children who undergo chronic peritoneal dialysis: a prospective study of the international pediatric peritonitis registry. Clin J Am Soc Nephrol 2010; 5: 1041–1046. 20100429. DOI: https://doi.org/10.2215/CJN.05150709

38. Zurowska A, Feneberg R, Warady BA, et al. Gram-negative peritonitis in children undergoing long-term peritoneal dialysis. Am J Kidney Dis 2008; 51: 455–462. DOI: https://doi.org/10.1053/j.ajkd.2007.11.011

39. Rinaldi S, Sera F, Verrina E, et al. The Italian registry of pediatric chronic peritoneal dialysis: a ten-year experience with chronic peritoneal dialysis catheters. Perit Dial Int 1998; 18: 71–74. DOI: https://doi.org/10.1177/089686089801800109

40. Debowski JA, Waerp C, Kjellevold SA, et al. Cuff extrusion in peritoneal dialysis: single-centre experience with the cuff-shaving procedure in five patients over a 4-year period. Clin Kidney J 2017; 10: 131–134. 20160916. DOI: https://doi.org/10.1093/ckj/sfw089

41. Crabtree JH, Shrestha BM, Chow KM, et al. Creating and maintaining optimal peritoneal dialysis access in the adult patient: 2019 Update. Perit Dial Int 2019; 39: 414–436. 20190426. DOI: https://doi.org/10.3747/pdi.2018.00232

42. Gokal R, Alexander S, Ash S, et al. Peritoneal catheters and exit-site practices toward optimum peritoneal access: 1998 update. Official report from the International Society for Peritoneal Dialysis). Perit Dial Int 1998; 18: 11–33. DOI: https://doi.org/10.1177/089686089801800102

43. Eklund B, Honkanen E, Kyllonen L, et al. Peritoneal dialysis access: prospective randomized comparison of single-cuff and double-cuff straight Tenckhoff catheters. Nephrol Dial Transplant 1997; 12: 2664–2666. DOI: https://doi.org/10.1093/ndt/12.12.2664

44. Nessim SJ, Bargman JM, Jassal SV. Relationship between double-cuff versus single-cuff peritoneal dialysis catheters and risk of peritonitis. Nephrol Dial Transplant 2010; 25: 2310–2314. 20100126. DOI: https://doi.org/10.1093/ndt/gfq002

45. Chow KM, Li PK, Cho Y, et al. ISPD Catheter-related Infection Recommendations: 2023 Update. Perit Dial Int 2023; 43: 201–219. 20230526. DOI: https://doi.org/10.1177/08968608231172740

46. Gadallah MF, Mignone J, Torres C, et al. The role of peritoneal dialysis catheter configuration in preventing catheter tip migration. Adv Perit Dial 2000; 16: 47–50.

47. Lye WC, Kour NW, van der Straaten JC, et al. A prospective randomized comparison of the Swan neck, coiled, and straight Tenckhoff catheters in patients on CAPD. Perit Dial Int 1996; 16(Suppl 1): S333–335. DOI: https://doi.org/10.1177/089686089601601S64

48. Schaefer F, Feneberg R, Aksu N, et al. Worldwide variation of dialysis-associated peritonitis in children. Kidney Int 2007; 72: 1374–1379. 20070919. DOI: https://doi.org/10.1038/sj.ki.5002523

49. Popovich RP, Moncrief JW, Nolph KD. Continuous ambulatory peritoneal dialysis. Artif Organs 1978; 2: 84–86. DOI: https://doi.org/10.1111/j.1525-1594.1978.tb01007.x

50. Daschner M, Gfrorer S, Zachariou Z, et al. Laparoscopic Tenckhoff catheter implantation in children. Perit Dial Int 2002; 22: 22–26. DOI: https://doi.org/10.1177/089686080202200104

51. Wasik HL, Keswani M, Munshi R, et al. Assessment of potential peritonitis risk factors in pediatric patients receiving maintenance peritoneal dialysis. Pediatr Nephrol 2023; 38: 4119–4125. DOI: https://doi.org/10.1007/s00467-023-06076-9

52. Lindley RM, Williams AR, Fraser N, et al. Synchronous laparoscopic-assisted percutaneous endoscopic gastrostomy and peritoneal dialysis catheter placement is a valid alternative to open surgery. J Pediatr Urol 2012; 8: 527–530. 20111022. DOI: https://doi.org/10.1016/j.jpurol.2011.09.011

53. Wright MJ, Bel'eed K, Johnson BF, et al. Randomized prospective comparison of laparoscopic and open peritoneal dialysis catheter insertion. Perit Dial Int 1999; 19: 372–375. DOI: https://doi.org/10.1177/089686089901900415

54. Medani S, Hussein W, Shantier M, et al. Comparison of percutaneous and open surgical techniques for first-time peritoneal dialysis catheter placement in the unbreached peritoneum. Perit Dial Int 2015; 35: 576–585. 20140731. DOI: https://doi.org/10.3747/pdi.2013.00003

55. Jwo SC, Chen KS, Lee CC, et al. Prospective randomized study for comparison of open surgery with laparoscopic-assisted placement of Tenckhoff peritoneal dialysis catheter–a single center experience and literature review. J Surg Res 2010; 159: 489–496. 20081009. DOI: https://doi.org/10.1016/j.jss.2008.09.008

56. Ozener C, Bihorac A, Akoglu E. Technical survival of CAPD catheters: comparison between percutaneous and conventional surgical placement techniques. Nephrol Dial Transplant 2001; 16: 1893–1899. DOI: https://doi.org/10.1093/ndt/16.9.1893

57. Voss D, Hawkins S, Poole G, et al. Radiological versus surgical implantation of first catheter for peritoneal dialysis: a randomized non-inferiority trial. Nephrol Dial Transplant 2012; 27: 4196–4204. 20120718. DOI: https://doi.org/10.1093/ndt/gfs305

58. van Laanen JHH, Cornelis T, Mees BM, et al. Randomized controlled trial comparing open versus laparoscopic placement of a peritoneal dialysis catheter and outcomes: The CAPD I trial. Perit Dial Int 2018; 38: 104–112. 20180131. DOI: https://doi.org/10.3747/pdi.2017.00023

59. Xie H, Zhang W, Cheng J, et al. Laparoscopic versus open catheter placement in peritoneal dialysis patients: a systematic review and meta-analysis. BMC Nephrol 2012; 13: 69. 20120727. DOI: https://doi.org/10.1186/1471-2369-13-69

60. Hagen SM, Lafranca JA, Steyerberg EW, et al. Laparoscopic versus open peritoneal dialysis catheter insertion: a meta-analysis. PLoS One 2013; 8(e56351): 20130215. DOI: https://doi.org/10.1371/journal.pone.0056351

61. Strippoli GF, Tong A, Johnson D, et al. Catheter-related interventions to prevent peritonitis in peritoneal dialysis: a systematic review of randomized, controlled trials. J Am Soc Nephrol 2004; 15: 2735–2746. DOI: https://doi.org/10.1097/01.ASN.0000141463.95561.79

62. Htay H, Johnson DW, Craig JC, et al. Catheter type, placement and insertion techniques for preventing catheter-related infections in chronic peritoneal dialysis patients. Cochrane Database Syst Rev 2019; 5: CD004680. 20190531. DOI: https://doi.org/10.1002/14651858.CD004680.pub3

63. Agarwal A, Whitlock RH, Bamforth RJ, et al. Percutaneous versus surgical insertion of peritoneal dialysis catheters: A systematic review and meta-analysis. Can J Kidney Health Dis 2021; 8. DOI: https://doi.org/10.1177/20543581211052731

64. Shrestha BM, Shrestha D, Kumar A, et al. Advanced laparoscopic peritoneal dialysis catheter insertion: systematic review and meta-analysis. Perit Dial Int 2018; 38: 163–171. DOI: https://doi.org/10.3747/pdi.2017.00230

65. Crabtree JH, Fishman A. A laparoscopic method for optimal peritoneal dialysis access. Am Surg 2005; 71: 135–143. DOI: https://doi.org/10.1177/000313480507100209

66. Flanigan M, Gokal R. Peritoneal catheters and exit-site practices toward optimum peritoneal access: a review of current developments. Perit Dial Int 2005; 25: 132–139. DOI: https://doi.org/10.1177/089686080502500204

67. Rinaldi S, Sera F, Verrina E, et al. Chronic peritoneal dialysis catheters in children: a fifteen-year experience of the Italian registry of pediatric chronic peritoneal dialysis. Perit Dial Int 2004; 24: 481–486. DOI: https://doi.org/10.1177/089686080402400515

68. Schuh MP, Nehus E, Liu C, et al. Omentectomy reduces the need for peritoneal dialysis catheter revision in children: a study from the Pediatric Nephrology Research Consortium. Pediatr Nephrol 2021; 36: 3953–3959. 20210614. DOI: https://doi.org/10.1007/s00467-021-05150-4

69. Sojo ET, Grosman MD, Monteverde ML, et al. Fibrin glue is useful in preventing early dialysate leakage in children on chronic peritoneal dialysis. Perit Dial Int 2004; 24: 186–190. DOI: https://doi.org/10.1177/089686080402400211

70. Htay H, Johnson DW, Craig JC, et al. Urgent-start peritoneal dialysis versus haemodialysis for people with chronic kidney disease. Cochrane Database Syst Rev 2021; 1: CD012899. 20210127. DOI: https://doi.org/10.1002/14651858.CD012899.pub2

71. Sardegna KM, Beck AM, Strife CF. Evaluation of perioperative antibiotics at the time of dialysis catheter placement. Pediatr Nephrol 1998; 12: 149–152. DOI: https://doi.org/10.1007/s004670050427

72. Bennet-Jones D MJ, Barratt AJ, DuDy J, Naish PF, Aber GM. Prophylactic gentamicin in the prevention of early exit-site infections and peritonitis in CAPD. Advances in Peritoneal Dialysis 1988; 4: 147–150.

73. Wikdahl AM, Engman U, Stegmayr BG, et al. One-dose cefuroxime i.v. and i.p. reduces microbial growth in PD patients after catheter insertion. Nephrol Dial Transplant 1997; 12: 157–160. DOI: https://doi.org/10.1093/ndt/12.1.157

74. Lye WC, Lee EJ, Tan CC. Prophylactic antibiotics in the insertion of Tenckhoff catheters. Scand J Urol Nephrol 1992; 26: 177–180. DOI: https://doi.org/10.1080/00365599.1992.11690450

75. Gadallah MF, Ramdeen G, Mignone J, et al. Role of preoperative antibiotic prophylaxis in preventing postoperative peritonitis in newly placed peritoneal dialysis catheters. Am J Kidney Dis 2000; 36: 1014–1019. DOI: https://doi.org/10.1053/ajkd.2000.19104

76. Campbell D, Mudge DW, Craig JC, et al. Antimicrobial agents for preventing peritonitis in peritoneal dialysis patients. Cochrane Database Syst Rev 2017; 4: CD004679. 20170408. DOI: https://doi.org/10.1002/14651858.CD004679.pub3

77. Harel Z, Wald R, Bell C, et al. Outcome of patients who develop early-onset peritonitis. Adv Perit Dial 2006; 22: 46–49.

78. Feng S, Wang Y, Qiu B, et al. Impact of early-onset peritonitis on mortality and technique survival in peritoneal dialysis patients. Springerplus 2016; 5: 1676. 20160929. DOI: https://doi.org/10.1186/s40064-016-3369-9

79. Twardowski ZJ, Prowant BF. Exit-site healing post catheter implantation. Perit Dial Int 1996; 16(Suppl 3): S51–S70. DOI: https://doi.org/10.1177/089686089601603S03

80. Dombros N, Dratwa M, Feriani M, et al. European best practice guidelines for peritoneal dialysis. 3 Peritoneal access. Nephrol Dial Transplant 2005; 20(Suppl 9): ix8–ix12. DOI: https://doi.org/10.1093/ndt/gfi1117

81. Prowant BF, Warady BA, Nolph KD. Peritoneal dialysis catheter exit-site care: results of an international survey. Perit Dial Int 1993; 13: 149–154. DOI: https://doi.org/10.1177/089686089301300214

82. Kopriva-Altfahrt G, Konig P, Mundle M, et al. Exit-site care in Austrian peritoneal dialysis centers – a nationwide survey. Perit Dial Int 2009; 29: 330–339. DOI: https://doi.org/10.1177/089686080902900319

83. Ding XR, Huang HE, Liao YM, et al. Daily self-care practices influence exit-site condition in patients having peritoneal dialysis: A multicenter cross-sectional survey. J Adv Nurs 2021; 77: 2293–2306. 20210111. DOI: https://doi.org/10.1111/jan.14751

84. Chua AN, Goldstein SL, Bell D, et al. Topical mupirocin/sodium hypochlorite reduces peritonitis and exit-site infection rates in children. Clin J Am Soc Nephrol 2009; 4: 1939–1943. 20091009. DOI: https://doi.org/10.2215/CJN.02770409

85. Szeto CC, Li PK, Johnson DW, et al. ISPD catheter-related infection recommendations: 2017 update. Perit Dial Int 2017; 37: 141–154. DOI: https://doi.org/10.3747/pdi.2016.00120

86. Luzar MA, Brown CB, Balf D, et al. Exit-site care and exit-site infection in continuous ambulatory peritoneal dialysis (CAPD): results of a randomized multicenter trial. Perit Dial Int 1990; 10: 25–29. DOI: https://doi.org/10.1177/089686089001000303

87. Waite NM, Webster N, Laurel M, et al. The efficacy of exit site povidone-iodine ointment in the prevention of early peritoneal dialysis-related infections. Am J Kidney Dis 1997; 29: 763–768. DOI: https://doi.org/10.1016/S0272-6386(97)91130-6

88. Wilson AP, Lewis C, O'Sullivan H, et al. The use of povidone iodine in exit site care for patients undergoing continuous peritoneal dialysis (CAPD). J Hosp Infect 1997; 35: 287–293. DOI: https://doi.org/10.1016/S0195-6701(97)90222-X

89. Wang JLHSY, Chang MY, Wu YH, Wang HH. Daily chlorhexidine care at exit site in patients with peritoneal dialysis: a randomized control trial. J Microbiol Imm Inf 2015; 48: S57–58. DOI: https://doi.org/10.1016/j.jmii.2015.02.122

90. Mendoza-Guevara L, Castro-Vazquez F, Aguilar-Kitsu A, et al. Amuchina 10&per; solution, safe antiseptic for preventing infections of exit-site of Tenckhoff catheters, in the pediatric population of a dialysis program. Contrib Nephrol 2007; 154: 139–144. DOI: https://doi.org/10.1159/000096959

91. Wadhwa NK, Cabralda T, Stratos J, Cascio C, Irwin C, et al. A randomized trial of Amuchina 10&per; versus povidone-iodine 10&per; solution for exit-site care/infection in peritoneal dialysis patients. Perit Dial Int 1995; 15: S1–64.

92. Wadhwa NKSH, Cabralda T. Amuchina 5&per; versus povidone-iodine 10&per; solution for exit-site care/infection in peritoneal dialysis patients. Perit Dial Int 1997; 17: S1–46. DOI: https://doi.org/10.1177/089686089701700224

93. Fuchs JGE, Jackson-Bey D, Krawtz D, Schreiber MJ. A prospective randomized study of peritoneal catheter exit-site care. Nephrol Hypertens 1990; 19: 81–84.

94. Piraino B. Staphylococcus aureus infections in dialysis patients: focus on prevention. ASAIO J 2000; 46: S13–17. DOI: https://doi.org/10.1097/00002480-200011000-00031

95. Blowey DL, Warady BA, McFarland KS. The treatment of Staphylococcus aureus nasal carriage in pediatric peritoneal dialysis patients. Adv Perit Dial 1994; 10: 297–299.

96. Kingwatanakul P, Warady BA. Staphylococcus aureus nasal carriage in children receiving long-term peritoneal dialysis. Adv Perit Dial 1997; 13: 281–284.

97. Gupta B, Bernardini J, Piraino B. Peritonitis associated with exit site and tunnel infections. Am J Kidney Dis 1996; 28: 415–419. DOI: https://doi.org/10.1016/S0272-6386(96)90500-4

98. Swartz R, Messana J, Starmann B, et al. Preventing Staphylococcus aureus infection during chronic peritoneal dialysis. J Am Soc Nephrol 1991; 2: 1085–1091. DOI: https://doi.org/10.1681/ASN.V261085

99. Bernardini J, Piraino B, Holley J, et al. A randomized trial of Staphylococcus aureus prophylaxis in peritoneal dialysis patients: mupirocin calcium ointment 2&per; applied to the exit site versus cyclic oral rifampin. Am J Kidney Dis 1996; 27: 695–700. DOI: https://doi.org/10.1016/S0272-6386(96)90105-5

100. Bernardini J, Bender F, Florio T, et al. Randomized, double-blind trial of antibiotic exit site cream for prevention of exit site infection in peritoneal dialysis patients. J Am Soc Nephrol 2005; 16: 539–545. 20041229. DOI: https://doi.org/10.1681/ASN.2004090773

101. Chu KH, Choy WY, Cheung CC, et al. A prospective study of the efficacy of local application of gentamicin versus mupirocin in the prevention of peritoneal dialysis catheter-related infections. Perit Dial Int 2008; 28: 505–508. DOI: https://doi.org/10.1177/089686080802800514

102. Xu G, Tu W, Xu C. Mupirocin for preventing exit-site infection and peritonitis in patients undergoing peritoneal dialysis. Nephrol Dial Transplant 2010; 25: 587–592. 20090813. DOI: https://doi.org/10.1093/ndt/gfp411

103. Mahajan S, Tiwari SC, Kalra V, et al. Effect of local mupirocin application on exit-site infection and peritonitis in an Indian peritoneal dialysis population. Perit Dial Int 2005; 25: 473–477. DOI: https://doi.org/10.1177/089686080502500512

104. Lim CT, Wong KS, Foo MW. The impact of topical mupirocin on peritoneal dialysis infection in Singapore General Hospital. Nephrol Dial Transplant 2005; 20: 2202–2206. 20050726. DOI: https://doi.org/10.1093/ndt/gfi010

105. Obata Y, Murashima M, Toda N, et al. Topical application of mupirocin to exit sites in patients on peritoneal dialysis: a systematic review and meta-analysis of randomized controlled trials. Ren Replace Ther 2020; 6. DOI: https://doi.org/10.1186/s41100-020-00261-4

106. Piraino B, Bernardini J, Florio T, et al. Staphylococcus aureus prophylaxis and trends in gram-negative infections in peritoneal dialysis patients. Perit Dial Int 2003; 23: 456–459. DOI: https://doi.org/10.1177/089686080302300509

107. Mahaldar A, Weisz M, Kathuria P. Comparison of gentamicin and mupirocin in the prevention of exit-site infection and peritonitis in peritoneal dialysis. Adv Perit Dial 2009; 25: 56–59.

108. Pierce DA, Williamson JC, Mauck VS, et al. The effect on peritoneal dialysis pathogens of changing topical antibiotic prophylaxis. Perit Dial Int 2012; 32: 525–530. 20120201. DOI: https://doi.org/10.3747/pdi.2011.00183

109. Wong PN, Tong GM, Wong YY, et al. Alternating mupirocin/gentamicin is associated with increased risk of fungal peritonitis as compared with gentamicin alone—results of a randomized open-label controlled trial. Perit Dial Int 2016; 36(3): 340–346. DOI: https://doi.org/10.3747/pdi.2015.00237

110. Johnson DW, Badve SV, Pascoe EM, et al. Antibacterial honey for the prevention of peritoneal-dialysis-related infections (HONEYPOT): a randomised trial. Lancet Infect Dis 2014; 14: 23–30. 20131010. DOI: https://doi.org/10.1016/S1473-3099(13)70258-5

111. Khandelwal M, Bailey S, Izatt S, et al. Structural changes in silicon rubber peritoneal dialysis catheters in patients using mupirocin at the exit site. Int J Artif Organs 2003; 26: 913–917. DOI: https://doi.org/10.1177/039139880302601007

112. Gardezi AI, Schlageter KW, Foster DM, et al. Erosion of the Silicone Peritoneal Dialysis Catheter with the Use of Gentamicin Cream at the Exit Site. Adv Perit Dial 2016; 32: 15–18.

113. Riu S, Ruiz CG, Martinez-Vea A, et al. Spontaneous rupture of polyurethane peritoneal catheter. A possible deleterious effect of mupirocin ointment. Nephrol Dial Transplant 1998; 13: 1870–1871. DOI: https://doi.org/10.1093/ndt/13.7.1870

114. Wong C, Luk IW, Ip M, et al. Prevention of gram-positive infections in peritoneal dialysis patients in Hong Kong: a cost-effectiveness analysis. Am J Infect Control 2014; 42: 412–416. DOI: https://doi.org/10.1016/j.ajic.2013.12.008

115. Forbes TA, Shaw L, Quinlan C. Topical Honey in the Management of Pediatric Peritoneal Dialysis Exit Sites. Perit Dial Int 2016; 36: 684–687. DOI: https://doi.org/10.3747/pdi.2014.00350

116. Luzar MA. Peritonitis prevention in continuous ambulatory peritoneal dialysis. Nephrologie 1992; 13: 171–177.

117. Warady BA, Ellis EN, Fivush BA, et al. “Flush before fill” in children receiving automated peritoneal dialysis. Perit Dial Int 2003; 23: 493–498. DOI: https://doi.org/10.1177/089686080302300516

118. Garcia-Lopez E, Mendoza-Guevara L, Morales A, et al. Comparison of peritonitis rates in children on CAPD with spike connector versus two disconnect systems. Adv Perit Dial 1994; 10: 300–303.

119. Daly C, Cody JD, Khan I, et al. Double bag or Y-set versus standard transfer systems for continuous ambulatory peritoneal dialysis in end-stage kidney disease. Cochrane Database Syst Rev 2014; 2014: CD003078. 20140813. DOI: https://doi.org/10.1002/14651858.CD003078.pub2

120. Burkart JM, Hylander B, Durnell-Figel T, et al. Comparison of peritonitis rates during long-term use of standard spike versus Ultraset in continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int 1990; 10: 41–43. DOI: https://doi.org/10.1177/089686089001000111

121. Maiorca R, Cantaluppi A, Cancarini GC, et al. Prospective controlled trial of a Y-connector and disinfectant to prevent peritonitis in continuous ambulatory peritoneal dialysis. Lancet 1983; 2: 642–644. DOI: https://doi.org/10.1016/S0140-6736(83)92528-X

122. wScalamogna A, De Vecchi A, Castelnovo C, et al. Long-term incidence of peritonitis in CAPD patients treated by the Y set technique: experience in a single center. Nephron 1990; 55: 24–27. DOI: https://doi.org/10.1159/000185913

123. Harris DC, Yuill EJ, Byth K, et al. Twin- versus single-bag disconnect systems: infection rates and cost of continuous ambulatory peritoneal dialysis. J Am Soc Nephrol 1996; 7: 2392–2398. DOI: https://doi.org/10.1681/ASN.V7112392

124. Kiernan L, Kliger A, Gorban-Brennan N, et al. Comparison of continuous ambulatory peritoneal dialysis-related infections with different “Y-tubing” exchange systems. J Am Soc Nephrol 1995; 5: 1835–1838. DOI: https://doi.org/10.1681/ASN.V5101835

125. Li PK, Szeto CC, Law MC, et al. Comparison of double-bag and Y-set disconnect systems in continuous ambulatory peritoneal dialysis: a randomized prospective multicenter study. Am J Kidney Dis 1999; 33: 535–540. DOI: https://doi.org/10.1016/S0272-6386(99)70191-5

126. Monteon F, Correa-Rotter R, Paniagua R, et al. Prevention of peritonitis with disconnect systems in CAPD: a randomized controlled trial. The Mexican Nephrology Collaborative Study Group. Kidney Int 1998; 54: 2123–2128. DOI: https://doi.org/10.1046/j.1523-1755.1998.00190.x

127. Cheng IK, Chan CY, Cheng SW, et al. A randomized prospective study of the cost-effectiveness of the conventional spike, O-set, and UVXD techniques in continuous ambulatory peritoneal dialysis. Perit Dial Int 1994; 14: 255–260. DOI: https://doi.org/10.1177/089686089401400311

128. Group CCCT. Peritonitis in continuous ambulatory peritoneal dialysis (CAPD): a multi-centre randomized clinical trial comparing the Y connector disinfectant system to standard systems. Canadian CAPD Clinical Trials Group. Perit Dial Int 1989; 9: 159–163. DOI: https://doi.org/10.1177/089686088900900304

129. Dryden MS, McCann M, Wing AJ, et al. Controlled trial of a Y-set dialysis delivery system to prevent peritonitis in patients receiving continuous ambulatory peritoneal dialysis. J Hosp Infect 1992; 20: 185–192. DOI: https://doi.org/10.1016/0195-6701(92)90086-2

130. Li PK, Chan TH, So WY, et al. Comparisons of Y-set disconnect system (Ultraset) versus conventional spike system in uremic patients on CAPD: outcome and cost analysis. Perit Dial Int 1996; 16(Suppl 1): S368–370. DOI: https://doi.org/10.1177/089686089601601S70

131. Owen JE, Walker RG, Lemon J, et al. Randomized study of peritonitis with conventional versus O-set techniques in continuous ambulatory peritoneal dialysis. Perit Dial Int 1992; 12: 216–220. DOI: https://doi.org/10.1177/089686089201200207

132. Viglino G, Colombo A, Scalamogna A, et al. Prospected randomized study of two Y devices in continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int 1989; 9: 165–168. DOI: https://doi.org/10.1177/089686088900900305

133. Viglino G, Colombo A, Cantu P, et al. In vitro and in vivo efficacy of a new connector device for continuous ambulatory peritoneal dialysis. Perit Dial Int 1993; 13(Suppl 2): S148–151. DOI: https://doi.org/10.1177/089686089301302S37

134. Rottembourg J BR, Issad B, Allouache M, Jacobs C. Prospective randomized study about Y-connectors in CAPD patients. Adv Perit Dial 1987; 3: 107–113.

135. Lindholm T SO, Krutzen L. Evaluation of a new take-off system (Ultraset) versus conventional spike system in uremic patients on CAPD: outcome and cost-analysis. Adv Perit Dial 1988; 4: 262–265.

136. Shaw V, Anderson C, Desloovere A, et al. Nutritional management of the infant with chronic kidney disease stages 2-5 and on dialysis. Pediatr Nephrol 2023; 38: 87–103. 20220405. DOI: https://doi.org/10.1007/s00467-022-05529-x

137. Murugasu B, Conley SB, Lemire JM, et al. Fungal peritonitis in children treated with peritoneal dialysis and gastrostomy feeding. Pediatr Nephrol 1991; 5: 620–621. DOI: https://doi.org/10.1007/BF00856656

138. Phan J, Stanford S, Zaritsky JJ, et al. Risk factors for morbidity and mortality in pediatric patients with peritoneal dialysis catheters. J Pediatr Surg 2013; 48: 197–202. DOI: https://doi.org/10.1016/j.jpedsurg.2012.10.035

139. Rahim KA, Seidel K, McDonald RA. Risk factors for catheter-related complications in pediatric peritoneal dialysis. Pediatr Nephrol 2004; 19: 1021–1028. 20040617. DOI: https://doi.org/10.1007/s00467-004-1520-2

140. Ramage IJ, Harvey E, Geary DF, et al. Complications of gastrostomy feeding in children receiving peritoneal dialysis. Pediatr Nephrol 1999; 13: 249–252. DOI: https://doi.org/10.1007/s004670050603

141. Warady BA, Bunchman T. Dialysis therapy for children with acute renal failure: survey results. Pediatr Nephrol 2000; 15: 11–13. DOI: https://doi.org/10.1007/s004670000420

142. Borzych-Duzalka D, Schaefer F, Warady BA. Targeting optimal PD management in children: what have we learned from the IPPN registry? Pediatr Nephrol 2021; 36: 1053–1063. 20200527. DOI: https://doi.org/10.1007/s00467-020-04598-0

143. Ledermann SE, Spitz L, Moloney J, et al. Gastrostomy feeding in infants and children on peritoneal dialysis. Pediatr Nephrol 2002; 17: 246–250. DOI: https://doi.org/10.1007/s00467-002-0846-x

144. von Schnakenburg C, Feneberg R, Plank C, et al. Percutaneous endoscopic gastrostomy in children on peritoneal dialysis. Perit Dial Int 2006; 26: 69–77. DOI: https://doi.org/10.1177/089686080602600111

145. Kempf C, Holle J, Berns S, et al. Feasibility of percutaneous endoscopic gastrostomy insertion in children receiving peritoneal dialysis. Perit Dial Int 2022; 42: 482–488. 20211117. DOI: https://doi.org/10.1177/08968608211057651

146. Fox D, Campagna EJ, Friedlander J, et al. National trends and outcomes of pediatric gastrostomy tube placement. J Pediatr Gastroenterol Nutr 2014; 59: 582–588. DOI: https://doi.org/10.1097/MPG.0000000000000468

147. Jones VS, La Hei ER, Shun A. Laparoscopic gastrostomy: the preferred method of gastrostomy in children. Pediatr Surg Int 2007; 23: 1085–1089. 20070908. DOI: https://doi.org/10.1007/s00383-007-2015-6

148. Dorman RM, Benedict LA, Sujka J, et al. Safety of laparoscopic gastrostomy in children receiving peritoneal dialysis. J Surg Res 2019; 244: 460–467. 20190719. DOI: https://doi.org/10.1016/j.jss.2019.06.090

149. Prestidge C, Ronaldson J, Wong W, et al. Infectious outcomes following gastrostomy in children receiving peritoneal dialysis. Pediatr Nephrol 2015; 30: 849–854. 20141204. DOI: https://doi.org/10.1007/s00467-014-2951-z

150. Adachi Y, Akino K, Mita H, et al. Systemic prophylactic antibiotics for the modified introducer method for percutaneous endoscopic gastrostomy: A prospective, randomized, double-blind study. J Clin Gastroenterol 2016; 50: 727–732. DOI: https://doi.org/10.1097/MCG.0000000000000470

151. Ingraham CR, Johnson GE, Albrecht EL, et al. Value of antibiotic prophylaxis for percutaneous gastrostomy: A double-blind randomized trial. J Vasc Interv Radiol 2018; 29: 55–61 e52. 20171101. DOI: https://doi.org/10.1016/j.jvir.2017.08.018

152. Lipp A, Lusardi G. Systemic antimicrobial prophylaxis for percutaneous endoscopic gastrostomy. Cochrane Database Syst Rev 2013; 2013: CD005571. 20131114. DOI: https://doi.org/10.1002/14651858.CD005571.pub3

153. Alessandri F, Strisciuglio C, Borrazzo C, et al. Antibiotic prophylaxis for percutaneous endoscopic gastrostomy in children: A randomised controlled trial. J Pediatr Gastroenterol Nutr 2021; 72: 366–371. DOI: https://doi.org/10.1097/MPG.0000000000002981

154. Chan EYH, Borzych-Duzalka D, Alparslan C, et al. Colostomy in children on chronic peritoneal dialysis. Pediatr Nephrol 2020; 35: 119–126. 20191030. DOI: https://doi.org/10.1007/s00467-019-04372-x

155. Warady BA, Bashir M, Donaldson LA. Fungal peritonitis in children receiving peritoneal dialysis: a report of the NAPRTCS. Kidney Int 2000; 58: 384–389. DOI: https://doi.org/10.1046/j.1523-1755.2000.00176.x

156. Lee KO, Park SJ, Kim JH, et al. Outcomes of peritonitis in children on peritoneal dialysis: a 25-year experience at Severance Hospital. Yonsei Med J 2013; 54: 983–989. DOI: https://doi.org/10.3349/ymj.2013.54.4.983

157. Bordador EB, Johnson DW, Henning P, et al. Epidemiology and outcomes of peritonitis in children on peritoneal dialysis in Australasia. Pediatr Nephrol 2010; 25: 1739–1745. DOI: https://doi.org/10.1007/s00467-010-1510-5

158. Munshi R, Sethna CB, Richardson T, et al. Fungal peritonitis in the Standardizing Care to Improve Outcomes in Pediatric End Stage Renal Disease (SCOPE) Collaborative. Pediatr Nephrol 2018; 33: 873–880. 20180108. DOI: https://doi.org/10.1007/s00467-017-3872-4

159. Raaijmakers R, Schroder C, Monnens L, et al. Fungal peritonitis in children on peritoneal dialysis. Pediatr Nephrol 2007; 22: 288–293. 20061117. DOI: https://doi.org/10.1007/s00467-006-0289-x

160. Robitaille P, Merouani A, Clermont MJ, et al. Successful antifungal prophylaxis in chronic peritoneal dialysis: a pediatric experience. Perit Dial Int 1995; 15: 77–79. DOI: https://doi.org/10.1177/089686089501500118

161. Zaruba K, Peters J, Jungbluth H. Successful prophylaxis for fungal peritonitis in patients on continuous ambulatory peritoneal dialysis: six years’ experience. Am J Kidney Dis 1991; 17: 43–46. DOI: https://doi.org/10.1016/S0272-6386(12)80249-6

162. Wadhwa NK, Suh H, Cabralda T. Antifungal prophylaxis for secondary fungal peritonitis in peritoneal dialysis patients. Adv Perit Dial 1996; 12: 189–191.

163. Moreiras-Plaza M, Vello-Roman A, Samprom-Rodriguez M, et al. Ten years without fungal peritonitis: a single center's experience. Perit Dial Int 2007; 27: 460–463. DOI: https://doi.org/10.1177/089686080702700416

164. Wong PN, Lo KY, Tong GM, et al. Prevention of fungal peritonitis with nystatin prophylaxis in patients receiving CAPD. Perit Dial Int 2007; 27: 531–536. DOI: https://doi.org/10.1177/089686080702700512

165. Lo WK, Chan CY, Cheng SW, et al. A prospective randomized control study of oral nystatin prophylaxis for Candida peritonitis complicating continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1996; 28: 549–552. DOI: https://doi.org/10.1016/S0272-6386(96)90466-7

166. Restrepo C, Chacon J, Manjarres G. Fungal peritonitis in peritoneal dialysis patients: successful prophylaxis with fluconazole, as demonstrated by prospective randomized control trial. Perit Dial Int 2010; 30: 619–625. 20100715. DOI: https://doi.org/10.3747/pdi.2008.00189

167. Neu A. Personal Communication.

168. Borzych-Duzałka D, Same R, Neu A, et al. Best Practice of peritoneal dialysis-associated gram-negative peritonitis in children: Insights from the international pediatric peritoneal dialysis network registry. Kidney Int Rep 2024; 9: 1654–1663. Personal Commication DOI: https://doi.org/10.1016/j.ekir.2024.03.031

169. Wilson WR, Gewitz M, Lockhart PB, et al. Prevention of Viridans group streptococcal infective endocarditis: A scientific statement from the american heart association. Circulation 2021; 143: e963–e978. 20210415.

170. Privitera G, Scarpellini P, Ortisi G, et al. Prospective study of Clostridium difficile intestinal colonization and disease following single-dose antibiotic prophylaxis in surgery. Antimicrob Agents Chemother 1991; 35: 208–210. DOI: https://doi.org/10.1128/AAC.35.1.208

171. Crotty MP, Meyers S, Hampton N, et al. Impact of antibacterials on subsequent resistance and clinical outcomes in adult patients with viral pneumonia: an opportunity for stewardship. Crit Care 2015; 19(404): 20151118. DOI: https://doi.org/10.1186/s13054-015-1120-5

172. Yap DY, Chu WL, Ng F, et al. Risk factors and outcome of contamination in patients on peritoneal dialysis–a single-center experience of 15 years. Perit Dial Int 2012; 32: 612–616. 20120601. DOI: https://doi.org/10.3747/pdi.2011.00268

173. Quinlan C, Cantwell M, Rees L. Eosinophilic peritonitis in children on chronic peritoneal dialysis. Pediatr Nephrol 2010; 25: 517–522. 20091202. DOI: https://doi.org/10.1007/s00467-009-1366-8

174. Kenan BU, Buyukkaragoz B, Leventoglu E, et al. Eosinophilic peritonitis in children undergoing maintenance peritoneal dialysis: A case report and literature review. Semin Dial 2022; 35: 548–555. 20220704. DOI: https://doi.org/10.1111/sdi.13113

175. Akman S, Uygun V, Guven AG. Value of the urine strip test in the early diagnosis of bacterial peritonitis. Pediatr Int 2005; 47: 523–527. DOI: https://doi.org/10.1111/j.1442-200x.2005.02119.x

176. Park SJ, Lee JY, Tak WT, et al. Using reagent strips for rapid diagnosis of peritonitis in peritoneal dialysis patients. Adv Perit Dial 2005; 21: 69–71.

177. Miller JM, Binnicker MJ, Campbell S, et al. A Guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 Update by the infectious diseases society of America and the American Society for microbiology. Clin Infect Dis 2018; 67: 813–816. DOI: https://doi.org/10.1093/cid/ciy584

178. Leber AL. (Ed) C-ADBE. Clinical Microbiology Procedure handbook, Multi-Volume (ASM Books). Washington, DC: ASM Press, 2023.

179. Flanigan MJ, Freeman RM, Lim VS. Cellular response to peritonitis among peritoneal dialysis patients. Am J Kidney Dis 1985; 6: 420–424. DOI: https://doi.org/10.1016/S0272-6386(85)80105-0

180. Rocklin MA, Teitelbaum I. Noninfectious causes of cloudy peritoneal dialysate. Semin Dial 2001; 14: 37–40. DOI: https://doi.org/10.1046/j.1525-139x.2001.00012.x

181. Warady BA, Feneberg R, Verrina E, et al. Peritonitis in children who receive long-term peritoneal dialysis: a prospective evaluation of therapeutic guidelines. J Am Soc Nephrol 2007; 18: 2172–2179. 20070620. DOI: https://doi.org/10.1681/ASN.2006101158

182. Chadha V, Schaefer FS, Warady BA. Dialysis-associated peritonitis in children. Pediatr Nephrol 2010; 25: 425–440. 20090204. DOI: https://doi.org/10.1007/s00467-008-1113-6

183. Schaefer F, Klaus G, Muller-Wiefel DE, et al. Intermittent versus continuous intraperitoneal glycopeptide/ceftazidime treatment in children with peritoneal dialysis-associated peritonitis. The Mid-European Pediatric Peritoneal Dialysis Study Group (MEPPS). J Am Soc Nephrol 1999; 10: 136–145. DOI: https://doi.org/10.1681/ASN.V101136

184. Piraino B, Bailie GR, Bernardini J, et al. Peritoneal dialysis-related infections recommendations: 2005 update. Perit Dial Int 2005; 25: 107–131. DOI: https://doi.org/10.1177/089686080502500203

185. Davis TK, Bryant KA, Rodean J, et al. Variability in culture-negative peritonitis rates in pediatric peritoneal dialysis programs in the United States. Clin J Am Soc Nephrol 2021; 16: 233–240. 20210118. DOI: https://doi.org/10.2215/CJN.09190620

186. von Graevenitz A, Amsterdam D. Microbiological aspects of peritonitis associated with continuous ambulatory peritoneal dialysis. Clin Microbiol Rev 1992; 5: 36–48. DOI: https://doi.org/10.1128/CMR.5.1.36

187. Tanratananon D, Deekae S, Raksasuk S, et al. Evaluation of different methods to improve culture-negative peritoneal dialysis-related peritonitis: A single-center study. Ann Med Surg (Lond) 2021; 63: 102139. 20210213. DOI: https://doi.org/10.1016/j.amsu.2021.01.087

188. Sewell DL, Golper TA, Hulman PB, et al. Comparison of large volume culture to other methods for isolation of microorganisms from dialysate. Perit Dial Int 1990; 10: 49–52. DOI: https://doi.org/10.1177/089686089001000113

189. Lye WC, Wong PL, Leong SO, et al. Isolation of organisms in CAPD peritonitis: a comparison of two techniques. Adv Perit Dial 1994; 10: 166–168.

19. Auguste BL, Girsberger M, Kennedy C, et al. Are adverse events in newly trained home dialysis patients related to learning styles? A single-centre retrospective study from Toronto, Canada. BMJ Open 2020; 10: e033315. 20200120. DOI: https://doi.org/10.1136/bmjopen-2019-033315

190. Blondeau JM, Pylypchuk GB, Kappel JE, et al. Comparison of bedside- and laboratory-inoculated Bactec high- and low-volume resin bottles for the recovery of microorganisms causing peritonitis in CAPD patients. Diagn Microbiol Infect Dis 1998; 31: 281–287. DOI: https://doi.org/10.1016/S0732-8893(97)00007-2

191. Yoo TH, Chang KH, Ryu DR, et al. Usefulness of 23S rRNA amplification by PCR in the detection of bacteria in CAPD peritonitis. Am J Nephrol 2006; 26: 115–120. 20060314. DOI: https://doi.org/10.1159/000092040

192. Johnson G, Wilks M, Warwick S, et al. Comparative study of diagnosis of PD peritonitis by quantitative polymerase chain reaction for bacterial DNA vs culture methods. J Nephrol 2006; 19: 45–49.

193. Muthucumarana K, Howson P, Crawford D, et al. The relationship between presentation and the time of initial administration of antibiotics with outcomes of peritonitis in peritoneal dialysis patients: The PROMPT study. Kidney Int Rep 2016; 1: 65–72. 20160611. DOI: https://doi.org/10.1016/j.ekir.2016.05.003

194. Oki R, Tsuji S, Hamasaki Y, et al. Time until treatment initiation is associated with catheter survival in peritoneal dialysis-related peritonitis. Sci Rep 2021; 11: 6547. 20210322. DOI: https://doi.org/10.1038/s41598-021-86071-y

195. Wong KM, Chan YH, Cheung CY, et al. Cefepime versus vancomycin plus netilmicin therapy for continuous ambulatory peritoneal dialysis-associated peritonitis. Am J Kidney Dis 2001; 38: 127–131. DOI: https://doi.org/10.1053/ajkd.2001.25205

196. Li PK, Ip M, Law MC, et al. Use of intraperitoneal cefepime as monotherapy in treatment of CAPD peritonitis. Perit Dial Int 2000; 20: 232–234. DOI: https://doi.org/10.1177/089686080002000212

197. Kitrungphaiboon T, Puapatanakul P, Chuengsaman P, et al. Intraperitoneal cefepime monotherapy versus combination therapy of cefazolin plus ceftazidime for empirical treatment of CAPD-associated peritonitis: A multicenter, open-label, noninferiority, randomized, controlled trial. Am J Kidney Dis 2019; 74: 601–609. 20190719. DOI: https://doi.org/10.1053/j.ajkd.2019.05.011

198. Badve SV, Hawley CM, McDonald SP, et al. Use of aminoglycosides for peritoneal dialysis-associated peritonitis does not affect residual renal function. Nephrol Dial Transplant 2012; 27: 381–387. 20110601. DOI: https://doi.org/10.1093/ndt/gfr274

199. Baker RJ, Senior H, Clemenger M, et al. Empirical aminoglycosides for peritonitis do not affect residual renal function. Am J Kidney Dis 2003; 41: 670–675. DOI: https://doi.org/10.1053/ajkd.2003.50129

200. Lui SL, Cheng SW, Ng F, et al. Cefazolin plus netilmicin versus cefazolin plus ceftazidime for treating CAPD peritonitis: effect on residual renal function. Kidney Int 2005; 68: 2375–2380. DOI: https://doi.org/10.1111/j.1523-1755.2005.00700.x

201. Kranzer K, Elamin WF, Cox H, et al. A systematic review and meta-analysis of the efficacy and safety of N-acetylcysteine in preventing aminoglycoside-induced ototoxicity: implications for the treatment of multidrug-resistant TB. Thorax 2015; 70: 1070–1077. 20150907. DOI: https://doi.org/10.1136/thoraxjnl-2015-207245

202. Feldman L, Efrati S, Eviatar E, et al. Gentamicin-induced ototoxicity in hemodialysis patients is ameliorated by N-acetylcysteine. Kidney Int 2007; 72: 359–363. 20070425. DOI: https://doi.org/10.1038/sj.ki.5002295

203. Kocyigit I, Vural A, Unal A, et al. Preventing amikacin related ototoxicity with N-acetylcysteine in patients undergoing peritoneal dialysis. Eur Arch Otorhinolaryngol 2015; 272: 2611–2620. 20140730. DOI: https://doi.org/10.1007/s00405-014-3207-z

204. Vural A, Kocyigit I, San F, et al. Long-term protective effect of N-acetylcysteine against amikacin-induced ototoxicity in end-stage renal disease: A randomized trial. Perit Dial Int 2018; 38: 57–62. 20171102. DOI: https://doi.org/10.3747/pdi.2017.00133

205. Tokgoz B, Ucar C, Kocyigit I, et al. Protective effect of N-acetylcysteine from drug-induced ototoxicity in uraemic patients with CAPD peritonitis. Nephrol Dial Transplant 2011; 26: 4073–4078. 20110506. DOI: https://doi.org/10.1093/ndt/gfr211

206. McDermott JH, Wolf J, Hoshitsuki K, et al. Clinical Pharmacogenetics implementation consortium guideline for the use of aminoglycosides based on MT-RNR1 genotype. Clin Pharmacol Ther 2022; 111: 366–372. 20210620. DOI: https://doi.org/10.1002/cpt.2309

207. Institute CaLS. Performance Standards for Antimicrobial Susceptibility Testing. 33rd ed. 2023.

208. Testing ECoAS. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0 ed. 2020.

209. Payne LE, Gagnon DJ, Riker RR, et al. Cefepime-induced neurotoxicity: a systematic review. Crit Care 2017; 21(276): 20171114. DOI: https://doi.org/10.1186/s13054-017-1856-1

210. Yuen S-K, Yong S-P, Tsui H-S. Neurotoxicity secondary to intraperitoneally administered cefepime: Report of Two Cases. Hong Kong J Nephrol 2004; 6: 106–108. DOI: https://doi.org/10.1016/S1561-5413(09)60168-X

211. Gerber JS, Ross RK, Bryan M, et al. Association of Broad- vs Narrow-spectrum antibiotics with treatment failure, adverse events, and quality of life in children with acute respiratory tract infections. JAMA 2017; 318: 2325–2336. DOI: https://doi.org/10.1001/jama.2017.18715

212. Joerger T, Taylor MG, Li Y, et al. Impact of penicillin allergy labels on children treated for outpatient respiratory infections. J Pediatric Infect Dis Soc 2023; 12: 92–98. DOI: https://doi.org/10.1093/jpids/piac125

213. Board A. Measurement of specific and nonspecific IgG4 levels as diagnostic and prognostic tests for clinical allergy. AAAI Board of Directors. J Allergy Clin Immunol 1995; 95: 652–654. DOI: https://doi.org/10.1016/S0091-6749(95)70167-2

214. Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the infectious diseases Society of America and the society for healthcare epidemiology of America. Clin Infect Dis 2016; 62: e51–77. 20160413. DOI: https://doi.org/10.1093/cid/ciw118

215. Ahmed KA, Fox SJ, Frigas E, et al. Clinical outcome in the use of cephalosporins in pediatric patients with a history of penicillin allergy. Int Arch Allergy Immunol 2012; 158: 405–410. 20120405. DOI: https://doi.org/10.1159/000333553

216. Chiron A, Gaouar H, Autegarden JE, et al. Allergy to third- and second-generation cephalosporins in confirmed penicillin-allergic patients. J Allergy Clin Immunol Pract 2020; 8: 2409–2411 e2403. 20200405. DOI: https://doi.org/10.1016/j.jaip.2020.03.021

217. Khan DA, Banerji A, Blumenthal KG, et al. Drug allergy: A 2022 practice parameter update. J Allergy Clin Immunol 2022; 150: 1333–1393. 20220917. DOI: https://doi.org/10.1016/j.jaci.2022.08.028

218. Same RG, Hsu AJ, Cosgrove SE, et al. Antibiotic-Associated Adverse Events in Hospitalized Children. J Pediatric Infect Dis Soc 2021; 10: 622–628. DOI: https://doi.org/10.1093/jpids/piaa173

219. Same RG, Hsu AJ, Tamma PD. Optimizing the management of uncomplicated gram-negative bloodstream infections in children: Translating evidence from adults into pediatric practice. J Pediatric Infect Dis Soc 2019; 8: 485–488. DOI: https://doi.org/10.1093/jpids/piz051

220. Kovacich A, Tamma PD, Advani S, et al. Peripherally inserted central venous catheter complications in children receiving Outpatient Parenteral Antibiotic Therapy (OPAT). Infect Control Hosp Epidemiol 2016; 37: 420–424. 20160112. DOI: https://doi.org/10.1017/ice.2015.317

221. Greencorn DJ, Kuhle S, Ye L, et al. Risk factors for mechanical complications of peripherally inserted central catheters in children. Infect Control Hosp Epidemiol 2023; 44: 885–890. 20221020. DOI: https://doi.org/10.1017/ice.2022.193

222. AAP. Red Book 2021: Report of the Committee on Infectious Diseases. 32nd ed.: American Academy of Pediatrics, 2021–2024.

223. McMullan BJ, Bowen A, Blyth CC, et al. Epidemiology and Mortality of Staphylococcus aureus Bacteremia in Australian and New Zealand Children. JAMA Pediatr 2016; 170: 979–986. DOI: https://doi.org/10.1001/jamapediatrics.2016.1477

224. Tobudic S, Kern S, Kussmann M, et al. Effect of Peritoneal Dialysis Fluids on Activity of Teicoplanin Against Methicillin-Resistant Staphylococcus aureus Biofilm. Perit Dial Int 2019; 39: 293–294. DOI: https://doi.org/10.3747/pdi.2018.00168

225. Hennessy K, Capparelli EV, Romanowski G, et al. Intraperitoneal vancomycin for peritoneal dialysis-associated peritonitis in children: Evaluation of loading dose guidelines. Perit Dial Int 2021; 41: 202–208. 20200831. DOI: https://doi.org/10.1177/0896860820950924

226. Blowey DL, Warady BA, Abdel-Rahman S, et al. Vancomycin disposition following intraperitoneal administration in children receiving peritoneal dialysis. Perit Dial Int 2007; 27: 79–85. DOI: https://doi.org/10.1177/089686080702700117

227. Szeto CC, Chow KM, Kwan BC, et al. Staphylococcus aureus peritonitis complicates peritoneal dialysis: review of 245 consecutive cases. Clin J Am Soc Nephrol 2007; 2: 245–251. 20070103. DOI: https://doi.org/10.2215/CJN.03180906

228. Govindarajulu S, Hawley CM, McDonald SP, et al. Staphylococcus aureus peritonitis in Australian peritoneal dialysis patients: predictors, treatment, and outcomes in 503 cases. Perit Dial Int 2010; 30: 311–319. 20100226. DOI: https://doi.org/10.3747/pdi.2008.00258

229. Wang HH, Huang CH, Kuo MC, et al. Microbiology of peritoneal dialysis-related infection and factors of refractory peritoneal dialysis related peritonitis: A ten-year single-center study in Taiwan. J Microbiol Immunol Infect 2019; 52: 752–759. 20190108. DOI: https://doi.org/10.1016/j.jmii.2018.10.013

230. Chen HC, Shieh CC, Sung JM. Increasing staphylococcus species resistance in peritoneal dialysis-related peritonitis over a 10-Year period in a single taiwanese center. Perit Dial Int 2018; 38: 266–270. DOI: https://doi.org/10.3747/pdi.2017.00226

231. Camargo CH, Cunha Mde L, Caramori JC, et al. Peritoneal dialysis-related peritonitis due to coagulase-negative Staphylococcus: a review of 115 cases in a Brazilian center. Clin J Am Soc Nephrol 2014; 9: 1074–1081. 20140327. DOI: https://doi.org/10.2215/CJN.09280913

232. Szeto CC, Kwan BC, Chow KM, et al. Coagulase negative staphylococcal peritonitis in peritoneal dialysis patients: review of 232 consecutive cases. Clin J Am Soc Nephrol 2008; 3: 91–97. 20071121. DOI: https://doi.org/10.2215/CJN.03070707

233. Heywood A, Bargman JM. Coagulase-negative staphylococcal peritonitis: outcomes of cephalosporin-resistant strains. Adv Perit Dial 2010; 26: 34–36.

234. Edey M, Hawley CM, McDonald SP, et al. Enterococcal peritonitis in Australian peritoneal dialysis patients: predictors, treatment and outcomes in 116 cases. Nephrol Dial Transplant 2010; 25: 1272–1278. 20091130. DOI: https://doi.org/10.1093/ndt/gfp641

235. Szeto CC, Ng JK, Chow KM, et al. Treatment of enterococcal peritonitis in peritoneal dialysis patients by oral amoxicillin or intra-peritoneal vancomcyin: a retrospective study. Kidney Blood Press Res 2017; 42: 837–843. 20171027. DOI: https://doi.org/10.1159/000484426

236. Yip T, Tse KC, Ng F, et al. Clinical course and outcomes of single-organism Enterococcus peritonitis in peritoneal dialysis patients. Perit Dial Int 2011; 31: 522–528. 20110430. DOI: https://doi.org/10.3747/pdi.2009.00260

237. Sutherland SM, Alexander SR, Feneberg R, et al. Enterococcal peritonitis in children receiving chronic peritoneal dialysis. Nephrol Dial Transplant 2010; 25: 4048–4054. 20100525. DOI: https://doi.org/10.1093/ndt/gfq295

238. Kussmann M, Schuster L, Wrenger S, et al. Influence of different peritoneal dialysis fluids on the in vitro activity of cefepime, ciprofloxacin, ertapenem, meropenem and tobramycin against escherichia coli. Perit Dial Int 2016; 36: 662–668. 20160928. DOI: https://doi.org/10.3747/pdi.2015.00161

239. Paul LP S, Ficheux M, Debruyne D, et al. Pharmacokinetics of 300 mg/d Intraperitoneal Daptomycin: New Insight from the DaptoDP Study. Perit Dial Int 2018; 38: 463–466. DOI: https://doi.org/10.3747/pdi.2017.00256

240. Unal A, Agkus C, Kocyigit I, et al. Peritoneal dialysis-related peritonitis caused by vancomycin-resistant Enterococcus faecium. Ther Apher Dial 2011; 15: 115–116. 20100831. DOI: https://doi.org/10.1111/j.1744-9987.2010.00852.x

241. Bailey EM, Faber MD, Nafziger DA. Linezolid for treatment of vancomycin-resistant enterococcal peritonitis. Am J Kidney Dis 2001; 38: E20. DOI: https://doi.org/10.1053/ajkd.2001.27729

242. Song IJ, Seo JW, Kwon YE, et al. Successful treatment of vancomycin-resistant enterococcus peritonitis using linezolid without catheter removal in a peritoneal dialysis patient. Perit Dial Int 2014; 34: 235–239. DOI: https://doi.org/10.3747/pdi.2013.00076

243. Kussmann M, Schuster L, Zeitlinger M, et al. The influence of different peritoneal dialysis fluids on the in vitro activity of ampicillin, daptomycin, and linezolid against Enterococcus faecalis. Eur J Clin Microbiol Infect Dis 2015; 34: 2257–2263. 20150904. DOI: https://doi.org/10.1007/s10096-015-2477-8

244. Tamma PD, Aitken SL, Bonomo RA, et al. Infectious diseases society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Clin Infect Dis. Epub ahead of print 18 July 2023. DOI: 10.1093/cid/ciad428. DOI: https://doi.org/10.1093/cid/ciad428

245. Yip T, Tse KC, Lam MF, et al. Risk factors and outcomes of extended-spectrum beta-lactamase-producing E. coli peritonitis in CAPD patients. Perit Dial Int 2006; 26: 191–197. DOI: https://doi.org/10.1177/089686080602600213

246. Heil EL, Bork JT, Abbo LM, et al. Optimizing the management of uncomplicated gram-negative bloodstream infections: consensus guidance using a modified delphi process. Open Forum Infect Dis 2021; 8: ofab434. 20211011. DOI: https://doi.org/10.1093/ofid/ofab434

247. Kaye KS, Gupta V, Mulgirigama A, et al. Antimicrobial resistance trends in urine escherichia coli isolates from adult and adolescent females in the United States From 2011 to 2019: Rising ESBL Strains and Impact on Patient Management. Clin Infect Dis 2021; 73: 1992–1999. DOI: https://doi.org/10.1093/cid/ciab560

248. Collingwood JD, Yarbrough AH, Boppana SB, et al. Increasing prevalence of pediatric community-acquired UTI by extended spectrum beta-lactamase-producing E. coli: Cause for doncern. Pediatr Infect Dis J 2023; 42: 106–109. 20221115. DOI: https://doi.org/10.1097/INF.0000000000003777

249. Cassini A, Hogberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 2019; 19: 56–66. 20181105.

250. Harris PNA, Tambyah PA, Lye DC, et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA 2018; 320: 984–994. DOI: https://doi.org/10.1001/jama.2018.12163

251. Tamma PD, Conley AT, Cosgrove SE, et al. Association of 30-Day Mortality With Oral Step-Down vs Continued Intravenous Therapy in Patients Hospitalized With Enterobacteriaceae Bacteremia. JAMA Intern Med 2019; 179: 316–323. DOI: https://doi.org/10.1001/jamainternmed.2018.6226

252. Punjabi C, Tien V, Meng L, et al. Oral Fluoroquinolone or Trimethoprim-sulfamethoxazole vs. ss-lactams as Step-Down Therapy for Enterobacteriaceae Bacteremia: Systematic Review and Meta-analysis. Open Forum Infect Dis 2019; 6. 20190814. DOI: https://doi.org/10.1093/ofid/ofz364

253. Kussmann M, Ferth A, Obermuller M, et al. Compatibility of ciprofloxacin with commercial peritoneal dialysis solutions. Sci Rep 2019; 9: 6512. 20190424. DOI: https://doi.org/10.1038/s41598-019-42854-y

254. Fernandez-Varon E, Marin P, Espuny A, et al. Stability of moxifloxacin injection in peritoneal dialysis solution bags (Dianeal PD1 1.36&per; and Dianeal PD1 3.86&per;). J Clin Pharm Ther 2006; 31: 641–643. DOI: https://doi.org/10.1111/j.1365-2710.2006.00758.x

255. Skalioti C, Tsaganos T, Stamatiadis D, et al. Pharmacokinetics of moxifloxacin in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int 2009; 29: 575–579. DOI: https://doi.org/10.1177/089686080902900517

256. Lee C, Walker SAN, Palmay L, et al. Steady-state pharmacokinetics of oral ciprofloxacin in continuous cycling peritoneal dialysis patients: Brief report. Perit Dial Int 2018; 38: 73–76. DOI: https://doi.org/10.3747/pdi.2017.00052

257. Adefurin A, Sammons H, Jacqz-Aigrain E, et al. Ciprofloxacin safety in paediatrics: a systematic review. Arch Dis Child 2011; 96: 874–880. 20110723. DOI: https://doi.org/10.1136/adc.2010.208843

258. Li S, Chen Z, Huang L, et al. Safety of quinolones in children: A systematic review and meta-analysis. Paediatr Drugs 2022; 24: 447–464. 20220630. DOI: https://doi.org/10.1007/s40272-022-00513-2

259. Ross RK, Kinlaw AC, Herzog MM, et al. Fluoroquinolone Antibiotics and Tendon Injury in Adolescents. Pediatrics 2021; 147: 20210514. DOI: https://doi.org/10.1542/peds.2020-033316

26. Alhameedi RS CJ. How are families taught to look after their children on peritoneal dialysis? Saudi J Kidney Dis Transpl 2016; 27: 29–36. DOI: https://doi.org/10.4103/1319-2442.174065

260. Daneman N, Lu H, Redelmeier DA. Fluoroquinolones and collagen associated severe adverse events: a longitudinal cohort study. BMJ Open 2015; 5: e010077. 20151118. DOI: https://doi.org/10.1136/bmjopen-2015-010077

261. Lee CC, Lee MT, Chen YS, et al. Risk of aortic dissection and aortic aneurysm in patients taking oral fluoroquinolone. JAMA Intern Med 2015; 175: 1839–1847. DOI: https://doi.org/10.1001/jamainternmed.2015.5389

262. Singh S, Nautiyal A. Aortic dissection and aortic aneurysms associated with fluoroquinolones: A systematic review and meta-analysis. Am J Med 2017; 130: 1449–1457 e1449. 20170721. DOI: https://doi.org/10.1016/j.amjmed.2017.06.029

263. Pasternak B, Inghammar M, Svanstrom H. Fluoroquinolone use and risk of aortic aneurysm and dissection: nationwide cohort study. BMJ 2018; 360: k678. 20180308. DOI: https://doi.org/10.1136/bmj.k678

264. Lee CC, Lee MG, Hsieh R, et al. Oral fluoroquinolone and the risk of aortic dissection. J Am Coll Cardiol 2018; 72: 1369–1378. DOI: https://doi.org/10.1016/j.jacc.2018.06.067

265. Communication FDS. FDA warns about increased risk of ruptures or tears in the aorta blood vessel with fluoroquinolone antibiotics in certain patients. 2018.

266. Tamma PD, Doi Y, Bonomo RA, et al. A Primer on AmpC beta-Lactamases: Necessary knowledge for an increasingly multidrug-resistant world. Clin Infect Dis 2019; 69: 1446–1455. DOI: https://doi.org/10.1093/cid/ciz173

267. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009; 22: 161–182. Table of Contents 2009.

268. Jacobson KL, Cohen SH, Inciardi JF, et al. The relationship between antecedent antibiotic use and resistance to extended-spectrum cephalosporins in group I beta-lactamase-producing organisms. Clin Infect Dis 1995; 21: 1107–1113. DOI: https://doi.org/10.1093/clinids/21.5.1107

269. Chow JW, Fine MJ, Shlaes DM, et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 1991; 115: 585–590. DOI: https://doi.org/10.7326/0003-4819-115-8-585

270. Kaye KS, Cosgrove S, Harris A, et al. Risk factors for emergence of resistance to broad-spectrum cephalosporins among Enterobacter spp. Antimicrob Agents Chemother 2001; 45: 2628–2630. DOI: https://doi.org/10.1128/AAC.45.9.2628-2630.2001

271. Hilty M, Sendi P, Seiffert SN, et al. Characterisation and clinical features of Enterobacter cloacae bloodstream infections occurring at a tertiary care university hospital in Switzerland: is cefepime adequate therapy? Int J Antimicrob Agents 2013; 41: 236–249. 20130110. DOI: https://doi.org/10.1016/j.ijantimicag.2012.10.022

272. Tamma PD, Girdwood SC, Gopaul R, et al. The use of cefepime for treating AmpC beta-lactamase-producing Enterobacteriaceae. Clin Infect Dis 2013; 57: 781–788. 20130611. DOI: https://doi.org/10.1093/cid/cit395

273. Kohlmann R, Bahr T, Gatermann SG. Species-specific mutation rates for ampC derepression in Enterobacterales with chromosomally encoded inducible AmpC beta-lactamase. J Antimicrob Chemother 2018; 73: 1530–1536. DOI: https://doi.org/10.1093/jac/dky084

274. Choi SH, Lee JE, Park SJ, et al. Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC beta-lactamase: implications for antibiotic use. Antimicrob Agents Chemother 2008; 52: 995–1000. 20071217. DOI: https://doi.org/10.1128/AAC.01083-07

275. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 2017; 215: S28–S36. DOI: https://doi.org/10.1093/infdis/jiw282

276. Nadarajah L, Yaqoob MM, Fan S. Persistent colonization of exit site is associated with modality failure in peritoneal dialysis. Perit Dial Int 2022; 42: 96–99. 20201123. DOI: https://doi.org/10.1177/0896860820972598

277. Szeto CC, Chow KM, Leung CB, et al. Clinical course of peritonitis due to Pseudomonas species complicating peritoneal dialysis: a review of 104 cases. Kidney Int 2001; 59: 2309–2315. DOI: https://doi.org/10.1046/j.1523-1755.2001.00748.x

278. Siva B, Hawley CM, McDonald SP, et al. Pseudomonas peritonitis in Australia: predictors, treatment, and outcomes in 191 cases. Clin J Am Soc Nephrol 2009; 4: 957–964. 20090430. DOI: https://doi.org/10.2215/CJN.00010109

279. Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 2012; 25: 450–470. DOI: https://doi.org/10.1128/CMR.05041-11

28. Teo S, Yuen TW, Cheong CW, et al. Structured re-training to reduce peritonitis in a pediatric peritoneal dialysis program: a quality improvement intervention. Pediatr Nephrol 2021; 36: 3191–3200. 20210402. DOI: https://doi.org/10.1007/s00467-021-05039-2

280. Romney M. Humphries VUMC, Nashville, Tennessee. CLSI M100-Ed33: Updated Aminoglycoside Breakpoints for Enterobacterales and Pseudomonas aeruginosa. 2023.

281. Chang YT, Lin CY, Chen YH, et al. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front Microbiol 2015; 6(893): 20150902. DOI: https://doi.org/10.3389/fmicb.2015.00893

282. Cai B, Tillotson G, Benjumea D, et al. The burden of bloodstream infections due to stenotrophomonas maltophilia in the United States: A large, retrospective database study. Open Forum Infect Dis 2020; 7: ofaa141. 20200422. DOI: https://doi.org/10.1093/ofid/ofaa141

283. Sarzynski SH, Warner S, Sun J, et al. Trimethoprim-sulfamethoxazole versus levofloxacin for stenotrophomonas maltophilia infections: A retrospective comparative effectiveness study of electronic health records from 154 US hospitals. Open Forum Infect Dis 2022; 9: ofab644. 20220117. DOI: https://doi.org/10.1093/ofid/ofab644

284. Ko JH, Kang CI, Cornejo-Juarez P, et al. Fluoroquinolones versus trimethoprim-sulfamethoxazole for the treatment of Stenotrophomonas maltophilia infections: a systematic review and meta-analysis. Clin Microbiol Infect 2019; 25: 546–554. 20181116. DOI: https://doi.org/10.1016/j.cmi.2018.11.008

285. Shah MD, Coe KE, El Boghdadly Z, et al. Efficacy of combination therapy versus monotherapy in the treatment of Stenotrophomonas maltophilia pneumonia. J Antimicrob Chemother 2019; 74: 2055–2059. DOI: https://doi.org/10.1093/jac/dkz116

286. Hand E, Davis H, Kim T, et al. Monotherapy with minocycline or trimethoprim/sulfamethoxazole for treatment of Stenotrophomonas maltophilia infections. J Antimicrob Chemother 2016; 71: 1071–1075. 20160121. DOI: https://doi.org/10.1093/jac/dkv456

287. Htay H, Cho Y, Pascoe EM, et al. Multicentre registry data analysis comparing outcomes of culture-negative peritonitis and different subtypes of culture-positive peritonitis in peritoneal dialysis patients. Perit Dial Int 2020; 40: 47–56. DOI: https://doi.org/10.1177/0896860819879891

288. Kovitangkoon K, Lukkanalikitkul E, Wiangnon P, et al. Cefazolin plus ceftazidime versus cefazolin monotherapy in the treatment of culture-negative peritonitis: A retrospective cohort study. Int J Nephrol Renovasc Dis 2022; 15: 17–25. 20220211. DOI: https://doi.org/10.2147/IJNRD.S346427

289. Miles R, Hawley CM, McDonald SP, et al. Predictors and outcomes of fungal peritonitis in peritoneal dialysis patients. Kidney Int 2009; 76: 622–628. 20090610. DOI: https://doi.org/10.1038/ki.2009.202

290. Chang TI, Kim HW, Park JT, et al. Early catheter removal improves patient survival in peritoneal dialysis patients with fungal peritonitis: results of ninety-four episodes of fungal peritonitis at a single center. Perit Dial Int 2011; 31: 60–66. 20100526. DOI: https://doi.org/10.3747/pdi.2009.00057

291. Nadeau-Fredette AC, Bargman JM. Characteristics and outcomes of fungal peritonitis in a modern North American cohort. Perit Dial Int 2015; 35: 78–84. 20140204. DOI: https://doi.org/10.3747/pdi.2013.00179

292. Wang AY, Yu AW, Li PK, et al. Factors predicting outcome of fungal peritonitis in peritoneal dialysis: analysis of a 9-year experience of fungal peritonitis in a single center. Am J Kidney Dis 2000; 36: 1183–1192. DOI: https://doi.org/10.1053/ajkd.2000.19833

293. Goldie SJ, Kiernan-Tridle L, Torres C, et al. Fungal peritonitis in a large chronic peritoneal dialysis population: a report of 55 episodes. Am J Kidney Dis 1996; 28: 86–91. DOI: https://doi.org/10.1016/S0272-6386(96)90135-3

294. Blowey DL, Garg UC, Kearns GL, et al. Peritoneal penetration of amphotericin B lipid complex and fluconazole in a pediatric patient with fungal peritonitis. Adv Perit Dial 1998; 14: 247–250.

295. Peng LW, Lien YH. Pharmacokinetics of single, oral-dose voriconazole in peritoneal dialysis patients. Am J Kidney Dis 2005; 45: 162–166. DOI: https://doi.org/10.1053/j.ajkd.2004.09.017

296. Tobudic S, Harrison N, Forstner C, et al. Effect of peritoneal dialysis fluids on activity of echinocandins against Candida spp. biofilm. Med Mycol 2017; 55: 790–793. DOI: https://doi.org/10.1093/mmy/myw145

297. Gioia F, Gomez-Lopez A, Alvarez ME, et al. Pharmacokinetics of echinocandins in suspected candida peritonitis: A potential risk for resistance. Int J Infect Dis 2020; 101: 24–28. 20200913. DOI: https://doi.org/10.1016/j.ijid.2020.09.019

298. Akpolat T. Tuberculous peritonitis. Perit Dial Int 2009; 29(Suppl 2): S166–169. DOI: https://doi.org/10.1177/089686080902902S32

299. Ram R, Swarnalatha G, Akpolat T, et al. Mycobacterium tuberculous peritonitis in CAPD patients: a report of 11 patients and review of literature. Int Urol Nephrol 2013; 45: 1129–1135. 20121110. DOI: https://doi.org/10.1007/s11255-012-0311-0

300. Tamayo-Isla RA, de la Cruz MC, Okpechi IG. Mycobacterial Peritonitis in CAPD Patients in Limpopo: A 6-Year Cumulative Report from a Single Center in South Africa. Perit Dial Int 2016; 36: 218–222. DOI: https://doi.org/10.3747/pdi.2014.00322

301. Thomson BKA, Vaughan S, Momciu B. Mycobacterium tuberculosis peritonitis in peritoneal dialysis patients: A scoping review. Nephrology (Carlton) 2022; 27: 133–144. 20211206. DOI: https://doi.org/10.1111/nep.13997

302. Song Y, Wu J, Yan H, et al. Peritoneal dialysis-associated nontuberculous mycobacterium peritonitis: a systematic review of reported cases. Nephrol Dial Transplant 2012; 27: 1639–1644. 20110902. DOI: https://doi.org/10.1093/ndt/gfr504

303. Bnaya A, Wiener-Well Y, Soetendorp H, et al. Nontuberculous mycobacteria infections of peritoneal dialysis patients: A multicenter study. Perit Dial Int 2021; 41: 284–291. 20200513. DOI: https://doi.org/10.1177/0896860820923461

304. Fung WW, Chow KM, Li PK, et al. Clinical course of peritoneal dialysis-related peritonitis due to non-tuberculosis mycobacterium - A single centre experience spanning 20 years. Perit Dial Int 2022; 42: 204–211. 20210903. DOI: https://doi.org/10.1177/08968608211042434

305. Haubrich K, Mammen C, Sekirov I, et al. Mycobacterium fortuitum peritoneal dialysis-related peritonitis in a child: A case report and review of the literature. J Assoc Med Microbiol Infect Dis Can 2022; 7: 125–130. 20220603. DOI: https://doi.org/10.3138/jammi-2021-0029

306. Washida N, Itoh H. The Role of Non-Tuberculous Mycobacteria in Peritoneal Dialysis-Related Infections: A Literature Review. Contrib Nephrol 2018; 196: 155–161. 20180724. DOI: https://doi.org/10.1159/000485716

307. Renaud CJ, Subramanian S, Tambyah PA, et al. The clinical course of rapidly growing nontuberculous mycobacterial peritoneal dialysis infections in Asians: A case series and literature review. Nephrology (Carlton) 2011; 16: 174–179. DOI: https://doi.org/10.1111/j.1440-1797.2010.01370.x

308. Jiang SH, Roberts DM, Dawson AH, et al. Mycobacterium fortuitum as a cause of peritoneal dialysis-associated peritonitis: case report and review of the literature. BMC Nephrol 2012; 13(35): 20120608. DOI: https://doi.org/10.1186/1471-2369-13-35

309. Jiang SH, Roberts DM, Clayton PA, et al. Non-tuberculous mycobacterial PD peritonitis in Australia. Int Urol Nephrol 2013; 45: 1423–1428. 20121118. DOI: https://doi.org/10.1007/s11255-012-0328-4

310. Li PK, Szeto CC, Piraino B, et al. ISPD Peritonitis Recommendations: 2016 Update on Prevention and Treatment. Perit Dial Int 2016; 36: 481–508. 20160609. DOI: https://doi.org/10.3747/pdi.2016.00078

311. Yamada T, Ushijima K, Uemura O. A hospital-acquired outbreak of catheter-related nontuberculous mycobacterial infection in children on peritoneal dialysis. CEN Case Rep 2015; 4: 43–47. 20140720. DOI: https://doi.org/10.1007/s13730-014-0137-y

312. Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175: 367–416. DOI: https://doi.org/10.1164/rccm.200604-571ST

313. Lo MW, Mak SK, Wong YY, et al. Atypical mycobacterial exit-site infection and peritonitis in peritoneal dialysis patients on prophylactic exit-site gentamicin cream. Perit Dial Int 2013; 33: 267–272. 20121002. DOI: https://doi.org/10.3747/pdi.2011.00184

314. Burke M, Hawley CM, Badve SV, et al. Relapsing and recurrent peritoneal dialysis-associated peritonitis: a multicenter registry study. Am J Kidney Dis 2011; 58: 429–436. 20110520. DOI: https://doi.org/10.1053/j.ajkd.2011.03.022

315. Szeto CC, Kwan BC, Chow KM, et al. Recurrent and relapsing peritonitis: causative organisms and response to treatment. Am J Kidney Dis 2009; 54: 702–710. 20090704. DOI: https://doi.org/10.1053/j.ajkd.2009.04.032

316. Szeto CC, Kwan BC, Chow KM, et al. Repeat peritonitis in peritoneal dialysis: retrospective review of 181 consecutive cases. Clin J Am Soc Nephrol 2011; 6: 827–833. 20101223. DOI: https://doi.org/10.2215/CJN.05370610

317. Thirugnanasambathan T, Hawley CM, Badve SV, et al. Repeated peritoneal dialysis-associated peritonitis: a multicenter registry study. Am J Kidney Dis 2012; 59: 84–91. 20110816. DOI: https://doi.org/10.1053/j.ajkd.2011.06.018

318. Reis M, Ribeiro C, Gomes AM, et al. Repeat and relapsing peritonitis microbiological trends and outcomes: A 21-year single-center experience. Int J Nephrol 2021; 2021: 6662488. 20210130. DOI: https://doi.org/10.1155/2021/6662488

319. Whitty R, Bargman JM, Kiss A, et al. Residual kidney function and peritoneal dialysis-associated peritonitis treatment outcomes. Clin J Am Soc Nephrol 2017; 12: 2016–2022. 20171107. DOI: https://doi.org/10.2215/CJN.00630117

32. Furth SL, Donaldson LA, Sullivan EK, et al. Peritoneal dialysis catheter infections and peritonitis in children: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Nephrol 2000; 15: 179–182. DOI: https://doi.org/10.1007/s004670000441

320. Szeto CC, Ng JK, Wing-Shing Fung W, et al. Extended antibiotic therapy for the prevention of relapsing and recurrent peritonitis in peritoneal dialysis patients: a randomized controlled trial. Clin Kidney J 2021; 14: 991–997. 20210117. DOI: https://doi.org/10.1093/ckj/sfaa256

321. Szeto CC, Lai KB, Kwan BC, et al. Bacteria-derived DNA fragment in peritoneal dialysis effluent as a predictor of relapsing peritonitis. Clin J Am Soc Nephrol 2013; 8: 1935–1941. 20131003. DOI: https://doi.org/10.2215/CJN.02360213

322. Williams AJ, Boletis I, Johnson BF, et al. Tenckhoff catheter replacement or intraperitoneal urokinase: a randomised trial in the management of recurrent continuous ambulatory peritoneal dialysis (CAPD) peritonitis. Perit Dial Int 1989; 9: 65–67. DOI: https://doi.org/10.1177/089686088900900113

323. Ballinger AE, Palmer SC, Wiggins KJ, et al. Treatment for peritoneal dialysis-associated peritonitis. Cochrane Database Syst Rev 2014; 2014: CD005284. DOI: https://doi.org/10.1002/14651858.CD005284.pub3

324. Poyrazoglu HM, Dusunsel R, Patiroglu T, et al. Humoral immunity and frequency of peritonitis in chronic peritoneal dialysis patients. Pediatr Nephrol 2002; 17: 85–90. DOI: https://doi.org/10.1007/s00467-001-0742-9

325. Neu AM, Warady BA, Lederman HM, et al. Hypogammaglobulinemia in infants and young children maintained on peritoneal dialysis. Pediatric Dialysis Study Consortium. Perit Dial Int 1998; 18: 440–443. DOI: https://doi.org/10.1177/089686089801800418

326. Bouts AH, Davin JC, Krediet RT, et al. Immunoglobulins in chronic renal failure of childhood: effects of dialysis modalities. Kidney Int 2000; 58: 629–637. DOI: https://doi.org/10.1046/j.1523-1755.2000.00209.x

327. Lalan S, Dai H, Warady BA. Hypogammaglobulinemia in infants receiving chronic peritoneal dialysis. Pediatr Nephrol 2017; 32: 503–509. 20161007. DOI: https://doi.org/10.1007/s00467-016-3487-1

328. Courivaud C, Bardonnet K, Crepin T, et al. Serum immunoglobulin G levels and peritonitis in peritoneal dialysis patients. J Nephrol 2015; 28: 511–515. 20150311. DOI: https://doi.org/10.1007/s40620-015-0176-2

329. Ceri H, Olson ME, Stremick C, et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999; 37: 1771–1776. DOI: https://doi.org/10.1128/JCM.37.6.1771-1776.1999

330. Tong MK, Leung KT, Siu YP, et al. Use of intraperitoneal urokinase for resistant bacterial peritonitis in continuous ambulatory peritoneal dialysis. J Nephrol 2005; 18: 204–208.

331. Gadallah MF, Tamayo A, Sandborn M, et al. Role of intraperitoneal urokinase in acute peritonitis and prevention of catheter loss in peritoneal dialysis patients. Adv Perit Dial 2000; 16: 233–236.

332. Innes A, Burden RP, Finch RG, et al. Treatment of resistant peritonitis in continuous ambulatory peritoneal dialysis with intraperitoneal urokinase: a double-blind clinical trial. Nephrol Dial Transplant 1994; 9: 797–799.

333. Klaus G, Schafer F, Querfeld U, et al. Treatment of relapsing peritonitis in pediatric patients on peritoneal dialysis. Adv Perit Dial 1992; 8: 302–305.

334. Demoulin N, Goffin E. Intraperitoneal urokinase and oral rifampicin for persisting asymptomatic dialysate infection following acute coagulase-negative staphylococcus peritonitis. Perit Dial Int 2009; 29: 548–553. DOI: https://doi.org/10.1177/089686080902900513

335. Haivas CD, Teitelbaum I. Eradication of repeated episodes of coagulase-negative Staphylococcus peritonitis: a multipronged approach. Perit Dial Int 2019; 39: 568–570. DOI: https://doi.org/10.3747/pdi.2019.00247

336. Margetts P. Heparin and the peritoneal membrane. Perit Dial Int 2009; 29: 16–19. DOI: https://doi.org/10.1177/089686080902900102

337. de Boer AW, Levi M, Reddingius RE, et al. Intraperitoneal hypercoagulation and hypofibrinolysis is present in childhood peritonitis. Pediatr Nephrol 1999; 13: 284–287. DOI: https://doi.org/10.1007/s004670050609

338. Nadig C, Binswanger U, von Felten A. Is heparin therapy necessary in CAPD peritonitis? Perit Dial Int 1997; 17: 493–496. DOI: https://doi.org/10.1177/089686089701700513

339. Chow KM, Szeto CC, Kwan BC, et al. Randomized controlled study of icodextrin on the treatment of peritoneal dialysis patients during acute peritonitis. Nephrol Dial Transplant 2014; 29: 1438–1443. 20140226. DOI: https://doi.org/10.1093/ndt/gfu033

340. Hui YH, So WK, Ng MS, et al. Treating peritoneal dialysis catheter exit-site granulomas with chlorhexidine swabstick: a pilot study. J Ren Care 2021; 47: 103–112. 20201218. DOI: https://doi.org/10.1111/jorc.12358

341. Matinfar M, Taheri S, Karimi S, et al. Successful treatment of peritoneal dialysis catheter exit-site granuloma with silver ion-based dressing. J Vasc Access 2021; 22: 685–686. 20200720. DOI: https://doi.org/10.1177/1129729820938216

342. Piraino B. Peritoneal dialysis catheter replacement: “save the patient and not the catheter”. Semin Dial 2003; 16: 72–75. DOI: https://doi.org/10.1046/j.1525-139X.2003.03016.x

343. Choi P, Nemati E, Banerjee A, et al. Peritoneal dialysis catheter removal for acute peritonitis: a retrospective analysis of factors associated with catheter removal and prolonged postoperative hospitalization. Am J Kidney Dis 2004; 43: 103–111. DOI: https://doi.org/10.1053/j.ajkd.2003.08.046

344. Lu W, Kwan BC, Chow KM, et al. Peritoneal dialysis-related peritonitis caused by Pseudomonas species: insight from a post-millennial case series. PLoS One 2018; 13: e0196499. 20180510. DOI: https://doi.org/10.1371/journal.pone.0196499

345. Xu R, Chen Y, Luo S, et al. Clinical characteristics and outcomes of peritoneal dialysis-related peritonitis with different trends of change in effluent white cell count: a longitudinal study. Perit Dial Int 2013; 33: 436–444. 20130603. DOI: https://doi.org/10.3747/pdi.2012.00163

346. Tantiyavarong P, Traitanon O, Chuengsaman P, et al. Dialysate white blood cell change after initial antibiotic treatment represented the patterns of response in peritoneal dialysis-related peritonitis. Int J Nephrol 2016; 2016: 6217135. 20160830. DOI: https://doi.org/10.1155/2016/6217135

347. Lye WC, Leong SO, van der Straaten J, et al. Staphylococcus aureus CAPD-related infections are associated with nasal carriage. Adv Perit Dial 1994; 10: 163–165.

348. Szeto CC, Chow KM, Wong TY, et al. Feasibility of resuming peritoneal dialysis after severe peritonitis and tenckhoff catheter removal. J Am Soc Nephrol 2002; 13: 1040–1045. DOI: https://doi.org/10.1681/ASN.V1341040

349. Matuszkiewicz-Rowinska J. Update on fungal peritonitis and its treatment. Perit Dial Int 2009; 29: S161–S165. DOI: https://doi.org/10.1177/089686080902902S31

35. Swartz SJ, Neu A, Skversky Mason A, et al. Exit site and tunnel infections in children on chronic peritoneal dialysis: findings from the Standardizing Care to Improve Outcomes in Pediatric End Stage Renal Disease (SCOPE) Collaborative. Pediatr Nephrol 2018; 33: 1029–1035. 20180226. DOI: https://doi.org/10.1007/s00467-018-3889-3

350. Gudit S, Sudhakar P, Ram R, et al. Peritoneal scintigraphy in the diagnosis of adhesions. Perit Dial Int 2010; 30: 112–113. DOI: https://doi.org/10.3747/pdi.2009.00041

351. Ram R, Swarnalatha G, Dakshinamurty KV. Reinitiation of peritoneal dialysis after catheter removal for refractory peritonitis. J Nephrol 2014; 27: 445–449. 20140204. DOI: https://doi.org/10.1007/s40620-014-0048-1

352. Majkowski NL, Mendley SR. Simultaneous removal and replacement of infected peritoneal dialysis catheters. Am J Kidney Dis 1997; 29: 706–711. DOI: https://doi.org/10.1016/S0272-6386(97)90123-2

353. Posthuma N, Borgstein PJ, Eijsbouts Q, et al. Simultaneous peritoneal dialysis catheter insertion and removal in catheter-related infections without interruption of peritoneal dialysis. Nephrol Dial Transplant 1998; 13: 700–703. DOI: https://doi.org/10.1093/ndt/13.3.700

354. Crabtree JH, Siddiqi RA. Simultaneous catheter replacement for infectious and mechanical complications without interruption of peritoneal dialysis. Perit Dial Int 2016; 36: 182–187. 20151001. DOI: https://doi.org/10.3747/pdi.2014.00313

355. Viron C, Lobbedez T, Lanot A, et al. Simultaneous removal and reinsertion of the PD catheter in relapsing peritonitis. Perit Dial Int 2019; 39: 282–288. 20190309. DOI: https://doi.org/10.3747/pdi.2018.00230

356. Singhal MK, Vas SI, Oreopoulos DG. Treatment of peritoneal dialysis catheter-related infections by simultaneous catheter removal and replacement. Is it safe? Perit Dial Int 1998; 18: 565–567. DOI: https://doi.org/10.1177/089686089801800601

357. Lui SL, Yip T, Tse KC, et al. Treatment of refractory pseudomonas aeruginosa exit-site infection by simultaneous removal and reinsertion of peritoneal dialysis catheter. Perit Dial Int 2005; 25: 560–563. DOI: https://doi.org/10.1177/089686080502500611

358. van Diepen AT, Tomlinson GA, Jassal SV. The association between exit site infection and subsequent peritonitis among peritoneal dialysis patients. Clin J Am Soc Nephrol 2012; 7: 1266–1271. 20120628. DOI: https://doi.org/10.2215/CJN.00980112

359. Twardowski ZJ, Prowant BF. Exit-site study methods and results. Perit Dial Int 1996; 16: S6–S31. DOI: https://doi.org/10.1177/089686089601603S01

360. Elamin S, Khaier ME, Kaballo BG, et al. Low sensitivity of the exit site scoring system in detecting exit site infections in peritoneal dialysis patients. Clin Nephrol 2014; 81: 100–104. DOI: https://doi.org/10.5414/CN108179

361. Eriguchi M, Tsuruya K, Yoshida H, et al. Validation of the exit-site scoring system recommended by the 2005 guidelines of the international society for peritoneal dialysis. Perit Dial Int 2011; 31: 698–700. DOI: https://doi.org/10.3747/pdi.2010.00287

362. Mahima Keswani M, Kathleen Mallett APRN, Troy Richardson MPH,. et al. on behalf of the Standardizing Care to Improve Outcomes in Pediatric End Stage Kidney Disease (SCOPE) Investigators. Interobserver Agreement of Peritoneal Dialysis Exit Site Scoring: Results from the Standardizing Care to Improve Outcomes in Pediatric End Stage Kidney Disease (SCOPE) Collaborative. Peritoneal Dialysis International. Epub ahead of print 3 June 2024. DOI: 10.1177/08968608241254278. DOI: https://doi.org/10.1177/08968608241254278

363. Warady B. Peronal Communication.

364. Rigo M, Pecoits-Filho R, Lambie M, et al. Clinical utility of a traditional score system for the evaluation of the peritoneal dialysis exit-site infection in a national multicentric cohort study. Perit Dial Int 2021; 41: 292–297. 20200828. DOI: https://doi.org/10.1177/0896860820949032

365. Nardelli L, Scalamogna A, Castellano G. Utility of ultrasonographic examination in catheter-related infections in peritoneal dialysis: a clinical approach. J Nephrol 2023; 36: 1751–1761. 20230320. DOI: https://doi.org/10.1007/s40620-023-01589-w

366. Granata A, Rahbari E, Di Nicolo P, et al. The underrated role of ultrasound in peritoneal dialysis. J Ultrasound Med 2022; 41: 301–310. 20210329. DOI: https://doi.org/10.1002/jum.15710

367. Finkelstein ES, Jekel J, Troidle L, et al. Patterns of infection in patients maintained on long-term peritoneal dialysis therapy with multiple episodes of peritonitis. Am J Kidney Dis 2002; 39: 1278–1286. DOI: https://doi.org/10.1053/ajkd.2002.33403

368. Macchini F, Testa S, Valade A, et al. Conservative surgical management of catheter infections in children on peritoneal dialysis. Pediatr Surg Int 2009; 25: 703–707. 20090702. DOI: https://doi.org/10.1007/s00383-009-2412-0

369. Levy M, Balfe JW, Geary D, et al. Exit-site infection during continuous and cycling peritoneal dialysis in children. Perit Dial Int 1990; 10: 31–35. DOI: https://doi.org/10.1177/089686089001000109

370. Cervelli MJ e. The Renal Drug Reference Guide. Adelaide, Australia: Kidney Health Australia 2007.

371. Taketomo CK, Hurburt J, Kraus DM. Pediatric Dosage Handbook: Including Neonatal Dosing, Drug Administration, and Extemporaneous Preparations. 2010.

372. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 2014; 59: 147–159. 20140618. DOI: https://doi.org/10.1093/cid/ciu444

373. Hoshii S, Wada N, Honda M, et al. A survey of peritonitis and exit-site and/or tunnel infections in Japanese children on PD. Pediatr Nephrol 2006; 21: 828–834. 20060414. DOI: https://doi.org/10.1007/s00467-006-0004-y

374. Khan W, Bernier SP, Kuchma SL, et al. Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol 2010; 13: 207–212.

375. Lo CY, Chu WL, Wan KM, et al. Pseudomonas exit-site infections in CAPD patients: evolution and outcome of treatment. Perit Dial Int 1998; 18: 637–640. DOI: https://doi.org/10.1177/089686089801800612

376. Kazmi HR, Raffone FD, Kliger AS, et al. Pseudomonas exit site infections in continuous ambulatory peritoneal dialysis patients. J Am Soc Nephrol 1992; 2: 1498–1501. DOI: https://doi.org/10.1681/ASN.V2101498

377. Burkhalter F, Clemenger M, Haddoub SS, et al. Pseudomonas exit-site infection: treatment outcomes with topical gentamicin in addition to systemic antibiotics. Clin Kidney J 2015; 8: 781–784. 20150912. DOI: https://doi.org/10.1093/ckj/sfv089

378. Vychytil A, Lorenz M, Schneider B, et al. New criteria for management of catheter infections in peritoneal dialysis patients using ultrasonography. J Am Soc Nephrol 1998; 9: 290–296. DOI: https://doi.org/10.1681/ASN.V92290

379. Plum J, Sudkamp S, Grabensee B. Results of ultrasound-assisted diagnosis of tunnel infections in continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1994; 23: 99–104. DOI: https://doi.org/10.1016/S0272-6386(12)80818-3

380. Sachar M, Shah A. Epidemiology, management, and prevention of exit site infections in peritoneal dialysis patients. Ther Apher Dial 2022; 26: 275–287. 20210907. DOI: https://doi.org/10.1111/1744-9987.13726

381. Scalamogna A, Nardelli L, Zubidat D, et al. Simultaneous replacement and removal of the peritoneal catheter is effective in patients with refractory tunnel infections sustained by S. aureus. Int Urol Nephrol 2023; 55: 151–155. 20220711. DOI: https://doi.org/10.1007/s11255-022-03288-0

382. Borg D, Shetty A, Williams D, et al. Fivefold reduction in peritonitis using a multifaceted continuous quality initiative program. Adv Perit Dial 2003; 19: 202–205.

383. Diaz-Buxo JA, Wick GS, Pesich AA. Using CQI techniques for managing infections in PD patients. Nephrol News Issues 1998; 12: 22–24.

384. Schaefer F, Kandert M, Feneberg R. Methodological issues in assessing the incidence of peritoneal dialysis-associated peritonitis in children. Perit Dial Int 2002; 22: 234–238. DOI: https://doi.org/10.1177/089686080202200211

385. Nataatmadja M, Cho Y, Johnson DW. Continuous quality improvement initiatives to sustainably reduce peritoneal dialysis-related infections in Australia and New Zealand. Perit Dial Int 2016; 36: 472–477. DOI: https://doi.org/10.3747/pdi.2016.00114

386. Currier H, Heise P, Tal L. Quality improvement strategies and outcomes in pediatric dialysis. In: Bradley A, Warady SRA, Schaefer F (ed) Pediatric dialysis. Third ed. Cham: Springer, 2021, pp.81–99. DOI: https://doi.org/10.1007/978-3-030-66861-7_7

387. Alicia M, Neu BAW, Schaefer F. Infectious complications of peritoneal dialysis in children. Pediatric Dialysis 2021; 16: 265–290. DOI: https://doi.org/10.1007/978-3-030-66861-7_16

388. Borzych-Duzalka D. Personal Communication.

389. Warady B. Personal Communication.

390. Ling CW, Sud K, Van C, et al. Pharmacokinetics of culture-directed antibiotics for the treatment of peritonitis in automated peritoneal dialysis: a systematic narrative review. Perit Dial Int 2021; 41: 261–272. 20210209. DOI: https://doi.org/10.1177/0896860821990528

391. Lam E, Ting Kayla Lien Y, Kraft WK, et al. Intraperitoneal pharmacokinetics of vancomycin in patients on automated peritoneal dialysis. Clin Transl Sci 2022; 15: 649–657. 20211109. DOI: https://doi.org/10.1111/cts.13182

392. Roberts DM, Fernando G, Singer RF, et al. Antibiotic stability in commercial peritoneal dialysis solutions: influence of formulation, storage and duration. Nephrol Dial Transplant 2011; 26: 3344–3349. 20110215. DOI: https://doi.org/10.1093/ndt/gfr005

393. Williamson JC, Volles DF, Lynch PL, et al. Stability of cefepime in peritoneal dialysis solution. Ann Pharmacother 1999; 33: 906–909. DOI: https://doi.org/10.1345/aph.18336

394. de Vin F, Rutherford P, Faict D. Intraperitoneal administration of drugs in peritoneal dialysis patients: a review of compatibility and guidance for clinical use. Perit Dial Int 2009; 29: 5–15. DOI: https://doi.org/10.1177/089686080902900101

395. Ling CW, Sud K, Patel R, et al. Culture-directed antibiotics in peritoneal dialysis solutions: a systematic review focused on stability and compatibility. J Nephrol 2023; 36: 1841–1859. 20230807. DOI: https://doi.org/10.1007/s40620-023-01716-7

396. Mendes K, Harmanjeet H, Sedeeq M, et al. Stability of meropenem and piperacillin/tazobactam with heparin in Various peritoneal dialysis solutions. Perit Dial Int 2018; 38: 430–440. 20180710. DOI: https://doi.org/10.3747/pdi.2017.00274

397. So SWY, Chen L, Woo AYH, et al. Stability and compatibility of antibiotics in peritoneal dialysis solutions. Clin Kidney J 2022; 15: 1071–1078. 20220117. DOI: https://doi.org/10.1093/ckj/sfac012

398. Knowles MS, Holton E, Swanson RA. The adult learner: the definitive classic in adult education and human resource development. New York, NY: Routledge, 2014. DOI: https://doi.org/10.4324/9781315816951

399. Fleming N, Baume D. Learning styles again: VARKing up the right tree. Educ Dev, 2006; 7, pp.4–7. http://www.johnsilverio.com/EDUI6702/Fleming_VARK_learningstyles.pdf

400. Falbo Dos Reis P, Barretti P, Marinho L, et al. Pharmacokinetics of intraperitoneal vancomycin and amikacin in automated peritoneal dialysis patients with peritonitis. Front Pharmacol 2021; 12: 658014. 20210528. DOI: https://doi.org/10.3389/fphar.2021.658014

401. Farkas A, Oikonomou K, Ghanbar M, et al. Population pharmacokinetics of intraperitoneal gentamicin and the impact of varying dwell times on pharmacodynamic target attainment in patients with acute peritonitis undergoing peritoneal dialysis. Antimicrob Agents Chemother 2022; 66: 20211213. DOI: https://doi.org/10.1128/aac.01679-21

402. Manley HJ, Bailie GR, Frye R, et al. Pharmacokinetics of intermittent intravenous cefazolin and tobramycin in patients treated with automated peritoneal dialysis. J Am Soc Nephrol 2000; 11: 1310–1316. DOI: https://doi.org/10.1681/ASN.V1171310

403. Elwell RJ, Frye RF, Bailie GR. Pharmacokinetics of intraperitoneal cefepime in automated peritoneal dialysis. Perit Dial Int 2005; 25: 380–386. DOI: https://doi.org/10.1177/089686080502500414

404. Peerapornratana S, Chariyavilaskul P, Kanjanabuch T, et al. Short-Dwell cycling intraperitoneal cefazolin plus ceftazidime in peritoneal dialysis patients. Perit Dial Int 2017; 37: 218–224. 20161013. DOI: https://doi.org/10.3747/pdi.2015.00300

405. Leung CB, Szeto CC, Chow KM, et al. Cefazolin plus ceftazidime versus imipenem/cilastatin monotherapy for treatment of CAPD peritonitis–a randomized controlled trial. Perit Dial Int 2004; 24: 440–446. DOI: https://doi.org/10.1177/089686080402400508

406. de Fijter CW, Jakulj L, Amiri F, et al. Intraperitoneal meropenem for polymicrobial peritoneal dialysis-related peritonitis. Perit Dial Int 2016; 36: 572–573. DOI: https://doi.org/10.3747/pdi.2016.00023

407. Gilmore JF, Kim M, LaSalvia MT, et al. Treatment of enterococcal peritonitis with intraperitoneal daptomycin in a vancomycin-allergic patient and a review of the literature. Perit Dial Int 2013; 33: 353–357. DOI: https://doi.org/10.3747/pdi.2012.00277

408. Cheng IK, Chan CY, Wong WT, et al. A randomized prospective comparison of oral versus intraperitoneal ciprofloxacin as the primary treatment of peritonitis complicating continuous ambulatory peritoneal dialysis. Perit Dial Int 1993; 13: S351–S354. DOI: https://doi.org/10.1177/089686089301302S88

409. Arrieta AC, Neely M, Day JC, et al. Safety, tolerability, and population pharmacokinetics of intravenous and oral isavuconazonium sulfate in pediatric patients. Antimicrob Agents Chemother 2021; 65: e0029021. 20210716. DOI: https://doi.org/10.1128/AAC.00290-21

410. Gervasoni C, Bergia R, Cozzi V, et al. Is it time to revise linezolid doses in peritoneal dialysis patients? A case series. J Antimicrob Chemother 2015; 70: 2918–2920. 20150703. DOI: https://doi.org/10.1093/jac/dkv184

411. Ma TK, Leung CB, Chow KM, et al. Newer antibiotics for the treatment of peritoneal dialysis-related peritonitis. Clin Kidney J 2016; 9: 616–623. 20160704. DOI: https://doi.org/10.1093/ckj/sfw059

412. Yousaf F, Zaidi ST, Wanandy T, et al. Stability of cefepime in pH-neutral peritoneal dialysis solutions packaged in dual-compartment bags. Perit Dial Int 2016; 36: 457–459. DOI: https://doi.org/10.3747/pdi.2015.00169

413. Pallotta KE, Elwell RJ, Nornoo AO, et al. Stability of tobramycin and ceftazidime in icodextrin peritoneal dialysis solution. Perit Dial Int 2009; 29: 52–57. DOI: https://doi.org/10.1177/089686080902900108

414. Patel RP, Farawahida S, Shastri M, et al. Physical and chemical stability of ceftazidime and cefazolin in peritoneal dialysis solutions packaged in dual-chamber infusion bags. Am J Health Syst Pharm 2013; 70: 1477–1478. DOI: https://doi.org/10.2146/ajhp120692

415. Ranganathan D, Naicker S, Wallis SC, et al. Stability of antibiotics for intraperitoneal administration in extraneal 7.5&per; icodextrin peritoneal dialysis bags (STAB study). Perit Dial Int 2016; 36: 421–426. 20151022. DOI: https://doi.org/10.3747/pdi.2015.00062

416. Wiesholzer M, Winter A, Kussmann M, et al. Compatibility of meropenem with different commercial peritoneal dialysis solutions. Perit Dial Int 2017; 37: 51–55. 20160907. DOI: https://doi.org/10.3747/pdi.2016.00018

417. Kane MP, Bailie GR, Moon DG, et al. Stability of ciprofloxacin injection in peritoneal dialysis solutions. Am J Hosp Pharm 1994; 51: 373–377. DOI: https://doi.org/10.1093/ajhp/51.3.373

418. Robinson RF, Morosco RS, Smith CV, et al. Stability of cefazolin sodium in four heparinized and non-heparinized dialysate solutions at 38 degrees C. Perit Dial Int 2006; 26: 593–597. DOI: https://doi.org/10.1177/089686080602600513

419. Bookstaver PB, Rokas KE, Norris LB, et al. Stability and compatibility of antimicrobial lock solutions. Am J Health Syst Pharm 2013; 70: 2185–2198. DOI: https://doi.org/10.2146/ajhp120119

Texte Complet

Soumis

2025-03-31

Publié

2025-06-07

Comment citer

1.
Zaloszyc A, Dratwa M, Verger C. Guide de pratique clinique pour la prévention et la prise en charge des infections associées à la dialyse péritonéale chez l’enfant : mise à jour 2024: Traduction Française des recommandations pédiatriques de l’ISPD concernant les infections. Mise à jour 2024. Bull Dial Domic [Internet]. 7 juin 2025 [cité 21 sept. 2025];8(2):125-28. Disponible sur: https://bdd.rdplf.org/index.php/bdd/article/view/87071